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Motivation

Generative AI is transforming medicine, education, marketing, etc.
Can methodologists get some help from generative AI too?
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Using Generative AI to Improve Causal Inference

LLM-assisted causal inference with unstructured data
1 use LLM to generate treatment texts
2 randomly assign generated texts to survey respondents and measure

their reactions
3 extract the internal representation of generated text from LLM
4 machine learning using the extracted true vector representation

estimate a deconfounder that summarizes all confounding information
double machine learning for valid statistical inference

Advantage: no need to estimate embeddings
nonparametric modeling
computational efficiency
better empirical performance

Extension: instrumental variable approach to perceived treatments
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Motivating Application: Candidate Biography Experiment
(Fong and Grimmer, 2016)

Survey experiment
1246 biographies of American politicians from Wikipedia
1,886 voters as respondents
randomly assign biographies to voters
feeling thermometer as the outcome
supervised topic model to discover 10 treatment features
estimate the average treatment effects of estimated topic proportions

Existing methods for texts-as-treatments:
1 model-based approach (e.g., Egami et al. 2022; Fong and Grimmer, 2023)
2 causal representation learning based on embedding (e.g., Veitch et al.

2020; Pryzant et al. 2021; Gui and Veitch, 2023)
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Candidate biography with military background
Anthony Higgins was born in Red Lion Hundred in New Castle County,
Delaware. He attended Newark Academy and Delaware College, and grad-
uated from Yale College in 1861, where he was a member of Skull and
Bones. After studying law at the Harvard Law School, he was admitted
to the bar in 1864 and began practice in Wilmington, Delaware. He also
served for a time in the United States Army in 1864.
Candidate biography without military background
Benjamin Tappan was born in Northampton, Massachusetts, the second
child and oldest son of Benjamin Tappan and Sarah (Homes) Tappan, who
was a grandniece of Benjamin Franklin. Two of his younger brothers were
abolitionists Arthur Tappan and Lewis Tappan. He attended the public
schools in Northampton and traveled to the West Indies in his youth. He
apprenticed as a printer and engraver, also studying painting with Gilbert
Stuart. He read law to be admitted to the bar in Hartford, Connecticut,
in 1799. Later that year, he moved to the Connecticut Western Reserve
and founded what is now Ravenna, Ohio, laying out the original village in
1808. He married, March 20, 1801, Nancy Wright, sister of John C. Wright
(congressman), afterwards a United States House of Representatives from
Ohio. They had one son, Benjamin, born in 1812. 5 / 22



Using LLM to Generate Biographies (Llama 3)

Prompts Generated candidate biography
(System): You are a text
generator who always pro-
duces a biography of an in-
structed person.
(User): Create a biogra-
phy of an American politi-
cian named Nathaniel C.
Gilchrist

Nathaniel C. Gilchrist was an American
politician who served as a member of the
United States House of Representatives from
Maryland’s 4th congressional district from
1895 to 1899. Born on November 24, 1847,
in Baltimore, Maryland, Gilchrist was the son
of a prominent family of merchants and ship-
builders. He was educated at the Baltimore
City College and later attended the Univer-
sity of Maryland, where he studied law. After
graduating, he was admitted to the bar and
began practicing law in Baltimore.

Requirements:
1 open-source LLM: GPT, PaLM, Llama, OPT, etc.
2 assume LLM is compliant with prompt or use human coder
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Text Reuse: Using the Existing Texts as Treatments

Prompts Generated candidate biography
(System): You are a text generator
who just repeats the input text.
(User): Higgins was born in
Red Lion Hundred in New Castle
County, Delaware. He attended
Newark Academy and Delaware Col-
lege, and graduated from Yale Col-
lege in 1861, where he was a mem-
ber of Skull and Bones. After study-
ing law at the Harvard Law School,
he was admitted to the bar in 1864
and began practice in Wilmington,
Delaware. He also served for a time
in the United States Army in 1864.

Higgins was born in Red Lion
Hundred in New Castle County,
Delaware. He attended Newark
Academy and Delaware College,
and graduated from Yale College in
1861, where he was a member of
Skull and Bones. After studying
law at the Harvard Law School, he
was admitted to the bar in 1864
and began practice in Wilmington,
Delaware. He also served for a time
in the United States Army in 1864.
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Setup

Deep Generative Model

P(Xi | hγ(Ri )),

P(Ri | Pi ).

Pi : prompt
Xi : treatment object (generated texts)
Ri : hidden states or internal representations
hγ(Ri ): deterministic function from hidden states to last layer

Other variables
Yi (x): Potential outcome when exposed to treatment object x
Yi : Outcome (collected from the survey respondents)
Ti : Binary treatment feature (e.g., military experiences)
Ui : Confounding features (e.g., college education)
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Assumptions

1 Consistency:
Yi = Yi (Xi )

2 Randomization of Prompts:

Yi (x) ⊥⊥ Pi

3 Treatment Feature:
Ti = gT (Xi )

4 Confounding Features:

Ui = gU(Xi ) where dim(Ui ) ≪ dim(Xi )

5 Separability:
Yi (x) = Yi (gT (x), gU(x)),

Assumptions 3, 4, and 5 imply that for any t ∈ {0, 1} and u ∈ U ,

(overlap) P(Ti = t | Ui = u) > 0.
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6 Deterministic Decoding:

P(Xi | hγ(Ri )) is degenerate

stochastic decoding may induce dependence across observations
it will also confound the treatment-outcome relation
most LLMs have this option; greedy, beam, or contrastive searches
exception includes diffusion models

Assumptions by picture:

P R hγ(R) X

U = gU(X )

T = gT (X )

Y

Deep generative model
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Nonparametric Identification Result

Average treatment effect (ATE):

τ := E[Yi (1,Ui )− Yi (0,Ui )]

Under these assumptions, there exists a Deconfounder f : Rr → Rq

with q ≤ r such that

Yi⊥⊥Ri | Ti = t, f (Ri ), t ∈ {0, 1}

Example: Confounding Features Ui (deterministic function of Ri )
By adjusting for this Deconfounder, we can identify the marginal
distribution of potential outcome as

P(Yi (t,Ui ) = y) =

∫
Rr

P(Yi = y | Ti = t, f (Ri ))dF (Ri ),

Deconfounder does not have to be unique
Direct adjustment for Ri leads to the lack of overlap
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Estimation and Inference

Ri f (Ri ;λ)

µ1(f (Ri ;λ);θ1)

µ0(f (Ri ;λ);θ0)

Treated observations

Control observations

1 Estimate the outcome models and deconfounder via TarNet (Shalit et al.

2017):

{λ̂, θ̂0, θ̂1} = argmin
λ,θ0,θ1

1
n

n∑
i=1

{Yi − µTi
(f (Ri ;λ);θTi

)}2

2 Estimate the propensity score using the estimated Deconfounder

π(f (Ri , λ̂)) = P(Ti = 1 | f (Ri , λ̂))

Popular DragonNet (Shi et al. 2019) jointly estimates the outcome models,
propensity score, and deconfounder, leading to the lack of overlap
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Double Machine Learning (Chernozhukov et al. 2018)

Cross-fitting:
1 randomly divide the data into K folds
2 for each k = 1, . . . ,K , use the kth fold as the test set and the

remaining k − 1 folds as the training set
1 randomly split the training set further into two subsets
2 use the first subset to estimate outcome models and deconfounder
3 use the second subset to estimate propensity score given the estimated

deconfounder
3 Compute the ATE estimator as:

τ̂ =
1
nK

K∑
k=1

∑
i :I (i)=k

µ̂
(−k)
1 (f̂ (−k)(Ri ))− µ̂

(−k)
0 (f̂ (−k)(Ri ))

+
Ti{Yi − µ̂

(−k)
1 (f̂ (−k)(Ri ))}

π̂(−k)(f̂ (−k)(Ri ))
− (1 − Ti ){Yi − µ̂

(−k)
0 (f̂ (−k)(Ri ))}

1 − π̂(−k)(f̂ (−k)(Ri ))

Double robustness, asymptotic normality
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Practical Implementation Details

Internal representation extracted from LLM is still high-dimensional:

dim(R) = number of tokens × 4096 for Llama 3 (8 billion parameters)

Pooling strategies depend on deep generative models
BERT: the first special classification token [CLS]
Llama 3: the hidden states of the last token

TarNet requires hyperparameter tuning
size and depth of layers
learning rate
maximum epoch size

Use of automatic hyperparameter optimization methods (e.g., Optuna)
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Extension: Perceived Treatment via Instrumental Variables

P R hγ(R) X

T = gT (X ) T̃

U = gU(X )

Y

Deep generative model

Local average treatment effect (LATE):

E[Yi (1,Ui )− Yi (0,Ui ) | T̃ (1,Ui ) = 1, T̃ (0,Ui )]

Separability assumption:

Yi (x) = Yi (T̃i (gT (x), gU(x)), gT (x), gU(x))

Nonparametric identification under separability, monotonicity,
exclusion restriction
Estimation and inference with double machine learning
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Simulation Study Setup

A simulation based on the candidate biography experiment
Generate 4,000 US political candidates’ profiles with Llama 3 by
randomly sampling the first, middle, and last names from the Fong
and Grimme data
Instruct LLM to repeat the same texts for reuse
The data generating process:

Yi = 10 × Ti + 10 × TC1i + βC1C1i − βC2C2i + ϵi

ϵi ∼ N (µi , 1)

where
Ti : military background (binary)
C1i : topic-model based confounder
C2i : sentiment-analysis based confounder

2 × 3 = 6 scenarios:
1 separability holds or does not hold (separate or overlapping topics)
2 weak, medium, or strong confounding: βC1 = βC2 = 50, 100, or 1000
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Estimators to Be Compared
1 The proposed estimator:

neural network with one linear layer for the deconfounder with the
output dimension of 2048
neural network with two consecutive linear layers with ReLU activation
function for the outcome model
hyperparameter tuning based on the weak confounding setting

2 Estimators based on BERT embedding
T -learner (Pryzant et al. 2021)
DR-learner (Gui and Veitch 2023)

Loss function =
n∑

i=1

B(bfull(Xi ))︸ ︷︷ ︸
BERT fine-tuning

+
λ

n

n∑
i=1

{Yi − QTi (b(Xi ))}2

︸ ︷︷ ︸
outcome model

+
α

n

n∑
i=1

{
Ti log g(b(Xi )) + (1 − Ti ) log[1 − g(b(Xi ))]

}
︸ ︷︷ ︸

propensity score

truncate propensity score at 0.01 and 0.99
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Simulation Results

Absolute Bias
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Distribution of Estimated Propensity Score
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Performance across Different Sample Sizes
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1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000

0.00

0.25

0.50

0.75

1.00

5

10

15

20

−8

−6

−4

−2

Sample Size

Proposed (new) Proposed (reuse)

20 / 22



Empirical Analysis

Analyze the original survey by Fong and Grimmer (2016)
1,246 Congressional candidate biographies from Wikipedia
1,886 survey participants with a total of 5,291 observations
evaluate a biography using the feeling thermometer [0, 100]
Keyword-based treatment coding: “military”, “war”, “veteran”, or “army”
use text-reuse approach with Llama 3

Methods ATE 95% Conf. Int. Runtime (sec.)

Proposed method (reuse) 5.462 [2.790, 8.135] 28.9
T-learner with BERT −2.557 [−2.608, −2.505] 6139.7
DR-learner with BERT −67.777 [−109.967, −25.587] 6210.3
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Concluding Remarks

Generative AI can be used to improve causal inference
generate treatments at scale
enables the extraction of true internal representation
better causal representation learning

Further extensions:
images and videos
interpretation of estimated deconfounder
discovery of treatment concepts
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