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Motivation

@ Redistricting as a central element of American democracy

@ Redistricting may affect:

o Representation (Gelman and King 1994, McCarty et. al 2009)
e Turnout (Gay 2001, Baretto 2004)
e Incumbency advantage (Abramowitz et. al 2006)

Substantive researchers simulate redistricting plans to:

o detect gerrymandering
e assess impact of constraints (e.g., population, compactness, race)

Many optimization methods but surprisingly few simulation methods
@ Standard algorithm has no theoretical justification

Need a simulation method that:

© samples uniformly from the true underlying distribution
@ incorporates common constraints
© scales to larger redistricting problems

Fifield, Higgins, and Imai (Princeton) Automated Redistricting Simulator POLMETH 2014 2 /34



@ Explain the difficulties of simulating redistricting plans
@ Propose new Markov chain Monte Carlo algorithms
© Validate the algorithms on a small-scale data example

@ Present empirical analyses for New Hampshire and Mississippi



Characterizing the Distribution of Valid Redistricting Plans

@ Scholars want to characterize the distribution of redistricting plans
under various constraints

o Valid redistricting plans must have:

e geographically contiguous districts
e districts with equal population

Other constraints of interest: compactness, community boundary, etc.

Naive Approach 1: Enumeration

e Can't enumerate all plans (too many)
e Enumerating only valid plans is not trivial

Naive Approach 2: Random assignment

e Too few plans will have equal population
e Too few plans will be contiguous
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The Standard Simulation Algorithm

e Random seed-and-grow algorithm (Cirincione et. al 2000, Altman &
McDonald 2011, Chen & Rodden 2013):

© Randomly choose a precinct as a “seed” for each district
@ Identify precincts adjacent to each seed

© Randomly select adjacent precinct to merge with the seed
@ Repeat steps 2 & 3 until all precincts are assigned

© Swap precincts around borders to achieve population parity

Modify Step 3 to incorporate compactness

No theoretical properties known

The resulting sample may not be representative of the population

Leads to biased inference
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@ Independent sampling is
difficult

@ Markov chain Monte Carlo
algorithm

@ Can sample uniformly from the
target distribution

@ Start with a valid plan and then
swap precincts in a certain way



The Proposed Automated Redistricting Simulator

Iteration 1

@ Independent sampling is
difficult

@ Markov chain Monte Carlo
algorithm

@ Can sample uniformly from the
target distribution

@ Start with a valid plan and then

swap precincts in a certain way E@ E
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@ We prove that the algorithm samples uniformly from the population
of all valid redistricting plans

@ An extension of the Swendsen-Wang algorithm (Barbu & Zhu, 2005)

@ Metropolis-Hastings move from plan v — v* with acceptance prob.
p g p

a(v—v') = min (1, (1 q)BCWI-IBCI])

@ |B(C*,v)|: # of edges between connected component C' € C* and
its assigned district in redistricting plan v ~~ Easy to calculate






Incorporating a Population Constraint

@ Want to sample plans where

-
p
where py is population of district k, p is average district population, €
is strength of constraint
@ Strategy 1: Only propose “valid” swaps ~~ slow mixing
@ Strategy 2: Oversample certain plans and then reweight
© Sample from target distribution f rather than the uniform distribution:

f(v) o g(v) = exp <—6Z¢(Vk)>

Vk ev

‘Se

where 8 > 0 and 1(Vj) is deviation from parity for district Vj
@ Acceptance probability is still easy to calculate,

. - g(v*) |B(C* v)|—|B(C* v*))
a(v—v*) = min|( 1, -(1—gq ' '
v = min (1 £ )

© Discard invalid plans and reweight the rest by 1/g(v)
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© Compactness (Fryer and Holden 2011):

(Vi) o« > pipid;
i JEV,i<j

where dj; is the distance between precincts /, j

@ Similarity to the adapted plan:

Tk
Tk

k

(Vi) =

_ 1‘
where i (rf) is the # of precincts in V) (Vi of the adapted plan)

@ Any criteria where constraint can be evaluated at each district



Improving Mixing and Scaling up the Algorithm

@ Single iteration of the proposed algorithm runs very quickly

e But, like any MCMC algorithm, convergence may take a long time

© Swapping multiple connected components

e more effective than increasing g
e but still leads to low acceptance ratio

@ Simulated tempering (Geyer and Thompson, 1995)

e Lower and raise the “temperature” parameter § as part of MCMC
e Explores low temperature space before visiting high temperature space

© Divide and Conquer

e Run the proposed algorithm within randomly paired adjacent districts
e Enables parallel computing for a state with many districts
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@ Evaluate algorithms when all valid plans can be enumerated

@ # of precincts: 25 and 50
@ # of districts: 2 and 3 for the 25 set, and 2 for the 50 set
e With and without a “hard” population constraint of 20% within parity

@ Also, consider simulated tempering and divide-and-conquer

@ Comparison with the “random seed-and-grow"” algorithm via the BARD
package (Altman & McDonald 2011)

@ 10,000 draws for each algorithm



Unconstrained Simulations
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Without Divide and Conquer

With Divide and Conquer

(Algorithms 1 & 2)

(Algorithm 3)
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Runtime in Minutes

@ Run each algorithm for 10,000 simulations under different population
constraints
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@ Apply algorithm to state election data:

© New Hampshire: 2 congressional districts, 327 precincts
@ Mississippi: 4 congressional districts, 1,969 precincts

o Convergence diagnostics:

@ Autocorrelation
@ Trace plot
© Gelman-Rubin multiple chain diagnostic



New Hampshire: Simulated Tempering Helps Convergence

Hard Population Constraint

Simulated Tempering

(Algorithm 1)

(Algorithm 2)
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Missisippi: Divide-and-Conquer, No Simulated Tempering
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@ Question: How does the partisan bias of the adapted plan compare

with that of similar plans?

@ Two measures:
@ Number of Republican winners under each plan
@ Partisan bias (Gelman & King, 1994): Deviation from partisan

symmetry under each plan



e Empirical and Symmetric Seats-Votes Curves
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@ Absolute Deviation from Partisan Symmetry
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@ Question: How does a compactness standard limit partisan
manipulation of redistricting?

@ Two measures:
© Number of Republican winners under each plan
@ Deviation from partisan symmetry under each plan

e Two simulations (10 chains, 50,000 iterations each):
o Compare without compactness constraint to with compactness

constraint with simulated tempering
o When simulated tempering, inverse reweighting for uniform sampling
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@ Scholars use simulations to characterize the distribution of
redistricting plans

@ Many optimization algorithms but very few simulation methods

@ No theoretical guarantee for most common algorithms

e We propose a new MCMC algorithm that has:

e good theoretical properties
e superior speed
e better performance in validation and empirical studies

@ Future research:

e Continue to improve the algorithm for large-scale redistricting problems
e Derive methods for inference to uncover factors driving redistricting



Send additional comments and suggestions
to

bfifield@princeton.edu  mjh5@princeton.edu  kimai@princeton.edu
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