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Motivation

Two revolutions over the past 20 years:
1 causal inference
2 machine learning

Causal machine learning
1 individualized treatment rules
2 heterogeneous treatment effects

Experimental evaluation of causal machine learning (ML)
ML algorithms do not necessarily work well in practice
uncertainty quantification is important and yet difficult
evaluate causal ML before putting it in practice
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Evaluating Individualized Treatment Rules

Individualized treatment rules (ITRs)
designed to increase efficiency of policies or treatments
personalized medicine, micro-targeting in business/politics

Existing literature:
1 estimation of heterogeneous treatment effects
2 active development of optimal ITRs
3 extensive use of ML algorithms

Goal: use a randomized experiment to evaluate generic ITRs
1 use a separate experiment to evaluate ITRs developed with other data
2 use the same experiment to construct and evaluate ITRs

Imai and Li. “Experimental Evaluation of Individualized Treatment Rules.”
Journal of the American Statistical Association, Forthcoming.
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Key Contributions

1 Neyman’s repeated sampling framework
random treatment assignment, random sampling
no modeling assumption or asymptotic approximation
extend analysis to cross-fitting: random splitting

2 Evaluation measures
shortcomings of existing metrics
incorporating a budget constraint
overall evaluation metric for general ITRs
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Evaluation without a Budget Constraint

Setup
Binary treatment: Ti ∈ {0, 1}
Pre-treatment covariates: X ∈ X
No interference: Yi (T1 = t1,T2 = t2, . . . ,Tn = tn) = Yi (Ti = ti )
Random sampling of units:

(Yi (1),Yi (0),Xi )
i.i.d.∼ P

Completely randomized treatment assignment:

Pr(Ti = 1 | Yi (1),Yi (0),Xi ) =
n1

n
where n1 =

n∑
i=1

Ti

Fixed (for now) ITR:
f : X −→ {0, 1}

based on any ML algorithm or even a heuristic rule
sample splitting for experimental data, separate observational data
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Neyman’s Inference for the Standard Metric

Standard metric (Population Average “Value” or PAV):

λf = E{Yi (f (Xi ))}
A natural estimator:

λ̂f (Z) =
1
n1

n∑
i=1

YiTi f (Xi )︸ ︷︷ ︸
treated units who should

be treated

+
1
n0

n∑
i=1

Yi (1− Ti )(1− f (Xi ))︸ ︷︷ ︸
untreated units who should

not be treated

,

where Z = {Xi ,Ti ,Yi}n
i=1

Unbiasedness: E{λ̂f (Z)} = λf

Usual variance:

V{λ̂f (Z)} =
E(S2

f 1)

n1
+

E(S2
f 0)

n0
,

where S2
ft =

∑n
i=1(Yfi (t)− Yf (t))2/(n − 1),

Yfi (t) = 1{f (Xi ) = t}Yi (t), and Yf (t) =
∑n

i=1 Yfi (t)/n for
t = {0, 1}
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A Problem of Comparing ITRs Using the PAV

Proportion Treated, p

Average outcome

E[Yi (0)]

E[Yi (1)]

10.2

Random
Treatment

E[Yi (f (Xi ))]

0.2

E[Yi (g(Xi ))]

0.8

λf < λg : but g is performing worse than the random (i.e.,
non-individualized) treatment rule whereas f is not
Need to account for the proportion treated
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Accounting for the Proportion of Treated Units

Prop. Treated, p

Average outcome

E[Yi (0)]

E[Yi (1)]

1

E[Yi (f (Xi ))]

0.2

PAV

PAPE

Population Average Prescriptive Effect (PAPE):

τf = E{Yi (f (Xi ))− pf Yi (1)− (1− pf )Yi (0)}

where pf = Pr(f (Xi ) = 1) is the proportion treated under f
8 / 35



Estimating the Population Average Prescriptive Effect

An unbiased estimator of PAPE τf :

τ̂f (Z) =
n

n − 1

[
1
n1

n∑
i=1

YiTi f (Xi ) +
1
n0

n∑
i=1

Yi (1− Ti )(1− f (Xi ))︸ ︷︷ ︸
PAV of ITR

− p̂f

n1

n∑
i=1

YiTi −
1− p̂f

n0

n∑
i=1

Yi (1− Ti )

]
︸ ︷︷ ︸

PAV of random treatment rule with
the same treated proportion

where p̂f =
∑n

i=1 f (Xi )/n

We also derive its variance, and propose its consistent estimator
Not invariant to additive transformation: Yi + c

Solution: centering E(Yi (1) + Yi (0)) = 0  minimum variance
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Estimating and Evaluating ITRs via Cross-Fitting

Estimate and evaluate an ITR using the same experimental data
How should we account for both estimation uncertainty and evaluation
uncertainty under the Neyman’s framework?
Setup:

Learning algorithm
F : Z −→ F

K -fold cross-fitting: Z = {Z1,Z2, . . . ,ZK}

f̂−k = F (Z1,Z2, . . . ,Zk−1,Zk+1, . . . ,ZK )

Evaluation metric estimators:

λ̂F =
1
K

K∑
k=1

λ̂f̂−k
(Zk ), τ̂F =

1
K

K∑
k=1

τ̂f̂−k
(Zk )

Uncertainty over both evaluation data and all random sets of training
data (of a fixed size) as well as treatment assignment
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Causal Estimands

Population Average Value (PAV)
Generalized ITR averaging over the random sampling of training data
Ztr (due to random splitting)

f̄F (x) = E{f̂Ztr (x) | Xi = x} = Pr(f̂Ztr (x) = 1 | Xi = x)

Estimand

λF = E
{
f̄F (Xi )Yi (1) + (1− f̄F (Xi ))Yi (0)

}

Population Average Prescriptive Effect (PAPE)
Proportion treated

pF = E{f̄F (Xi )}.

Estimand
τF = E{λF − pFYi (1)− (1− pF )Yi (0)}.
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Inference under Cross-Fitting

Under Neyman’s framework, the cross-fitting estimators are unbiased,
i.e., E(λ̂F ) = λF and E(τ̂F ) = τF

The variance of the PAV estimator

V(λ̂F ) =
E(S2

f̂ 1
)

m1
+

E(S2
f̂ 0

)

m0︸ ︷︷ ︸
evaluation uncertainty

+E
{

Cov(f̂Ztr (Xi ), f̂Ztr (Xj ) | Xi ,Xj )τiτj

}
︸ ︷︷ ︸

estimation uncertainty

− K − 1
K

E(S2
F )︸ ︷︷ ︸

efficiency gain due
to cross−fitting

for i 6= j where mt is the size of the training set with Ti = t,

τi = Yi (1)− Yi (0), S2
F =

∑K
k=1

{
λ̂f̂−k

(Zk )− λ̂f̂−k
(Zk )

}2
/(K − 1)

Analogous results for the PAPE τF

12 / 35



Evaluation with a Budget Constraint

Policy makers often face a binding budget constraint p
Scoring rule:

s : X −→ S where S ⊂ R

Example: CATE s(x) = E(Yi (1)− Yi (0) | Xi = x)

(Fixed) ITR with a budget constraint:

f (Xi , c) = 1{s(Xi ) > c},

where cp(f ) = inf{c ∈ R : Pr(f (Xi , c) = 1) ≤ p}
PAPE under a budget constraint

τfp = E{Yi (f (Xi , cp(f )))− pYi (1)− (1− p)Yi (0)}.

We derive the bias (and its finite sample bound) and variance under
the Neyman’s framework
Extensions: cross-fitting, diff. in PAPE between two ITRs
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The Area Under Prescriptive Effect Curve (AUPEC)

Budget, p

Average outcome

E[Yi (0)]

E[Yi (1)]

E[Yi (f (Xi , c1/n))]

E[Yi (f (Xi , c2/n))]

1
n

2
n

pf

Measure of performance across different budget constraints
We show how to do inference with and without cross-fitting
Normalized AUPEC = average percentage gain using an ITR over the
randomized treatment rule across a range of budget contraints
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Simulations

Atlantic Causal Inference Conference data analysis challenge
Data generating process

8 covariates from the Infant Health and Development Program
(originally, 58 covariates and 4,302 observations)
population distribution = original empirical distribution
Model

Yi (t) = µ(Xi ) + τ(Xi )t + σ(Xi )εi ,

where t = 0, 1, εi
i.i.d.∼ N (0, 1), and

µ(x) = − sin(Φ(π(x))) + x43,

π(x) = 1/[1 + exp{3(x1 + x43 + 0.3(x10 − 1))− 1}],
τ(x) = ξ(x3x24 + (x14 − 1)− (x15 − 1)),

σ(x) = 0.25
√

V(µ(x) + π(x)τ(x)).

Two scenarios: large vs. small treatment effects ξ ∈ {2, 1/3}
Sample sizes: n ∈ {100, 500, 2, 000}
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Results I: Fixed ITR

No budget constraint, 20% constraint
f : Bayesian Additive Regression Tree (BART)
g : Causal Forest
h: LASSO

n = 100 n = 500 n = 2000
Estimator truth cov. bias s.d. cov. bias s.d. cov. bias s.d.
Small effect
τ̂f 0.066 94.3 0.005 0.124 96.2 0.001 0.053 95.1 0.001 0.026
τ̂f (c0.2) 0.051 93.2 −0.002 0.109 94.4 0.001 0.046 95.2 0.002 0.021
Γ̂f 0.053 95.3 0.001 0.106 95.1 0.001 0.045 94.8 −0.001 0.024
∆̂0.2(f , g) −0.022 94.0 0.006 0.122 95.4 0.002 0.051 96.0 0.000 0.026
∆̂0.2(f , h) −0.014 93.9 −0.001 0.131 94.9 −0.000 0.060 95.3 −0.000 0.030
Large effect
τ̂f 0.430 94.7 −0.000 0.163 95.7 0.000 0.064 94.4 -0.000 0.031
τ̂f (c0.2) 0.356 94.7 0.004 0.159 95.7 0.002 0.072 95.8 0.000 0.035
Γ̂f 0.363 94.3 −0.005 0.130 94.9 0.003 0.058 95.7 0.000 0.029
∆̂0.2(f , g) −0.000 96.9 0.008 0.151 97.9 −0.002 0.073 98.0 −0.000 0.026
∆̂0.2(f , h) 0.000 94.7 −0.004 0.140 97.7 −0.001 0.065 96.6 0.000 0.033
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Results II: Estimated ITR

5-fold cross fitting
F : LASSO
std. dev. for n = 500 is roughly half of the fixed n = 100 case

n = 100 n = 500 n = 2000
Estimator cov. bias s.d. cov. bias s.d. cov. bias s.d.
Small effect
λ̂F 96.4 0.001 0.216 96.7 0.002 0.100 97.2 0.002 0.046
τ̂F 94.6 −0.002 0.130 95.5 −0.002 0.052 94.4 −0.000 0.027
τ̂F (c0.2) 95.4 −0.003 0.120 95.4 −0.002 0.043 96.8 0.001 0.029
Γ̂F 98.2 0.002 0.117 96.8 −0.001 0.048 95.9 0.001 0.001
Large effect
λ̂H 96.9 −0.007 0.261 96.5 −0.003 0.125 97.3 0.001 0.062
τ̂F 93.6 −0.000 0.171 93.0 0.000 0.093 95.3 0.001 0.041
τ̂F (c0.2) 94.8 −0.002 0.170 96.2 −0.005 0.075 95.8 0.001 0.037
Γ̂F 98.5 0.001 0.126 98.9 0.005 0.053 99.0 0.001 0.026

17 / 35



Application to the STAR Experiment

Experiment involving 7,000 students across 79 schools
Randomized treatments (kindergarden):

1 Ti = 1: small class (13–17 students)
2 Ti = 0: regular class (22–25)
3 regular class with aid

Outcome: SAT scores
Literature on heterogeneous treatments in labor economics
10 covariates

4 demographics: gender, race, birth month, birth year
6 school characteristics: urban/rural, enrollment size, grade range,
number of students on free lunch, percentage white, number of
students on school buses

Sample size: n = 1, 911, 5-fold cross-fitting
Average Treatment Effects:

SAT reading: 6.78 (s.e.=1.71)
SAT math: 5.78 (s.e.=1.80)
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Results I: ITR Performance

BART Causal Forest LASSO
est. s.e. treated est. s.e. treated est. s.e. treated

Fixed ITR
No budget constraint

Reading 0 0 100% −0.38 1.14 84.3% −0.41 1.10 84.4%
Math 0.52 1.09 86.7 0.09 1.18 80.3 1.73 1.25 78.7
Writing −0.32 0.72 92.7 −0.70 1.18 78.0 −0.30 1.26 80.0

Budget constraint
Reading −0.89 1.30 20 0.66 1.23 20 −1.17 1.18 20
Math 0.70 1.25 20 2.57 1.29 20 1.25 1.32 20
Writing 2.60 1.17 20 2.98 1.18 20 0.28 1.19 20

Estimated ITR
No budget constraint

Reading 0.19 0.37 99.3% 0.31 0.77 86.6% 0.32 0.53 87.6%
Math 0.92 0.75 84.7 2.29 0.80 79.1 1.52 1.60 75.2
Writing 1.12 0.86 88.0 1.43 0.71 67.4 0.05 1.37 74.8

Budget constraint
Reading 1.55 1.05 20 0.40 0.69 20 −0.15 1.41 20
Math 2.28 1.15 20 1.84 0.73 20 1.50 1.48 20
Writing 2.31 0.66 20 1.90 0.64 20 −0.47 1.34 20
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Results II: Comparison between ML Algorithms

Causal Forest BART
vs. BART vs. LASSO vs. LASSO

est. 95% CI est. 95% CI est. 95% CI
Fixed ITR
Math 1.55 [−0.35, 3.45] 1.83 [−0.50, 4.16] 0.28 [−2.39, 2.95]
Reading 1.86 [−0.79, 4.51] 1.31 [−1.49, 4.11] −0.55 [−4.02, 2.92]
Writing 0.38 [−1.66, 2.42] 2.69 [−0.27, 5.65] 2.32 [−0.53, 5.15]

Estimated ITR
Reading −1.15 [−3.99, 1.69] 0.55 [−1.05, 2.15] 1.70 [−0.90, 4.30]
Math −0.43 [−2.57, 3.43] 0.34 [−1.32, 2.00] 0.77 [−1.99, 3.53]
Writing −0.41 [−1.63, 0.80] 2.37 [0.76, 3.98] 2.79 [1.32, 4.26]
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Results III: AUPEC

AUPEC = 1.52 (s.e. = 0.88) AUPEC = 1.02 (s.e. = 0.97) AUPEC = -0.06 (s.e. = 0.97)

BART Causal Forest LASSO
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Fixed ITR

AUPEC = 1.75 (s.e. = 2.18)AUPEC = 1.75 (s.e. = 2.18) AUPEC = 1.47 (s.e. = 1.33)AUPEC = 1.47 (s.e. = 1.33) AUPEC = -0.19 (s.e. = 2.00)AUPEC = -0.19 (s.e. = 2.00)

BART Causal Forest LASSO
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Estimated ITR
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Evaluation of Heterogeneous Treatment Effects

Another popular use of ML in causal inference
Estimation of heterogeneous treatment effects: random forest, BART,
Lasso, etc.

How can we make valid inference for heterogeneous treatment effects
discovered via a generic ML algorithm?

cannot assume ML algorithms converge uniformly
avoid computationally intensive method (e.g., repeated cross-fitting)
use Neyman’s repeated sampling framework for inference
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Setup and Causal Quantities of Interest

Conditional Average Treatment Effect (CATE):

τ(x) = E(Yi (1)− Yi (0) | Xi = x)

CATE estimation based on ML algorithm

s : X −→ S ⊂ R

Sorted Group Average Treatment Effect (GATE; Chernozhukov et al.
2019)

τk := E(Yi (1)− Yi (0) | ck−1(s) ≤ s(Xi ) < ck (s))

for k = 1, 2, . . . ,K where ck represents the cutoff between the
(k − 1)th and kth groups
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GATE Estimation as ITR Evaluation

A natural GATE estimator

τ̂k =
K

n1

n∑
i=1

YiTi f̂k (Xi )−
K

n0

n∑
i=1

Yi (1− Ti )f̂k (Xi ),

where f̂k (Xi ) = 1{s(Xi ) ≥ ĉk (s)} − 1{s(Xi ) ≥ ĉk−1(s)}
Rewrite this as the PAPE:

τ̂k = K

{
1
n1

n∑
i=1

YiTi f̂k (Xi ) +
1
n0

n∑
i=1

Yi (1− Ti )(1− f̂k (Xi ))︸ ︷︷ ︸
estimated PAV

− 1
n0

n∑
i=1

Yi (1− Ti )︸ ︷︷ ︸
no one gets treated

}

We can use our previous results!
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Inference for the Estimated GATE

Exact variance for sample splitting case (bias is negligible):

V(τ̂k ) = K 2

{
E(S2

k1)

n1
+

E(S2
k0)

n0︸ ︷︷ ︸
usual variance

− K − 1
K 2(n − 1)

κ2
k1︸ ︷︷ ︸

small adjustment term

}
,

where S2
kt =

∑n
i=1(Yki (t)− Yk (t))2/(n − 1) and

κkt = E(Yi (1)− Yi (0) | f̂k (Xi ) = t) with Yki (t) = f̂k (Xi )Yi (t), and
Yk (t) =

∑n
i=1 Yki (t)/n, for t = 0, 1

Asymptotic sampling distribution:

τ̂k − τk√
V(τ̂k )

d−→ N(0, 1)

Generalizes to cross-fitting case
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Two Nonparametric Tests of Heterogeneity
1 Treatment effect heterogeneity:

Null hypothesis

H0 : τ̂ = (τ̂1 − τ̂ , · · · , τ̂K − τ̂)>

Reference distribution

τ̂>Σ−1τ̂
d−→ χ2

K

2 Rank-consistent treatment effect heterogeneity:
Null hypothesis

H∗0 : τ1 ≤ τ2 ≤ · · · ≤ τK

Reference distribution

(τ̂ − µ∗(τ̂ ))>Σ−1 (τ̂ − µ∗(τ̂ ))
d−→ χ̄2

K

where

µ∗(x) = argmin
µ
‖µ− x‖22 subject to µ1 ≤ µ2 ≤ · · · ≤ µK ,

with µ = (µ1, µ2, . . . , µK )> and x ∈ RK
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A Simulation Study

2016 ACIC competition (Dorie et al., 2019)
Sample size n = 4, 802 and 58 covariates, taken from a real study
We generate data sets using their data generating process

Sample size: n = 100, 500, and 2, 500
Number of groups: K = 5
Sample splitting: trained on the original ACIC data
Cross-fitting: 5-fold
ML algorithms: BART, Causal Forest, and Lasso
Finite sample properties (sample splitting and cross-fitting)

1 GATE estimation
2 Nonparametric tests (treatment effect homogeneity  false;

rank-consistency  true)
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Sample-Splitting Case: GATE
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Cross-Fitting Case: GATE
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Sample-Splitting Case: Nonparametric Tests
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Cross-Fitting Case: Nonparametric Tests
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Empirical Application

National Supported Work Demonstration Program (LaLonde 1986)
Temporary employment program to help disadvantaged workers by
giving them a guaranteed job for 9 to 18 months

Data
sample size: n1 = 297 and n0 = 425
outcome: annualized earnings in 1978 (36 months after the program)
7 pre-treatment covariates: demographics and prior earnings

Setup
ML algorithms: Causal Forest, BART, and LASSO
Sample-splitting: 2/3 of the data as training data
Cross-fitting: 3 folds
5 fold cross-validation for tuning parameters
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GATE Estimates (in 1,000 US Dollars)
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Nonparametric Tests
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Concluding Remarks

Causal machine learning is everywhere
estimation of heterogeneous treatment effects (HTEs)
development of individualized treatment rules (ITRs)

Inference about HTEs and ITRs has been largely model-based
We show how to experimentally evaluate HTEs and ITRs
No modeling assumption or asymptotic approximation is required
Complex machine learning algorithms can be used
Applicable to cross-fitting estimators
Simulations: good small sample performance

Ongoing extension: dynamic ITRs

Open source software: evalITR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evalITR
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