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Motivation and Overview

Rise of causal machine learning (causal ML)
1 heterogeneous treatment effects
2 individualized treatment rules

Statistical evaluation of causal ML
1 causal ML algorithms may not work well in practice
2 assumption-free uncertainty quantification is essential

Today’s talk will show how to statistically evaluate:
1 individualized treatment rules derived by causal ML
2 heterogeneous treatment effects discovered by causal ML
3 exceptional responders identified by causal ML
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Neyman’s Repeated Sampling Framework

Notation: n experimental units
1 Ti ∈ {0, 1}: binary treatment
2 Yi (t) where t ∈ {0, 1}: potential outcomes
3 Yi = Yi (Ti ): observed outcome

Assumptions:
1 no interference between units: Yi (T1 = t1, . . . ,Tn = tn) = Yi (Ti = ti )
2 randomization of treatment assignment: {Yi (1),Yi (0)}⊥⊥Ti

3 random sampling of units: {Yi (1),Yi (0)}
i.i.d.∼ P

Causal estimand and estimator
1 average treatment effect (ATE): τ = E(Yi (1)− Yi (0))
2 difference-in-means estimator: τ̂ = 1

n1

∑n
i=1 YiTi − 1

n0

∑n
i=1(1 − Ti )Yi

Finite sample results
1 unbiasedness: E(τ̂) = τ
2 variance: V(τ̂) = V(Yi (1))

n1
+ V(Yi (0))

n0
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1. Individualized Treatment Rules
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Experimental Evaluation of Individualized Treatment Rules

Consider a fixed (for now) individualized treatment rule (ITR):

f (Xi ) ∈ {0, 1}

where Xi is a set of pre-treatment covariates
ITR is obtained from an external dataset (e.g., sample splitting)
no assumption about ITR (e.g., any causal ML, heuristic rule)

Evaluation metric examples:
1 Population average value (PAV)

λf = E{Yi (f (Xi ))}

2 Population average prescriptive effect (PAPE)

γf = E{Yi (f (Xi ))− pYi (1)− (1 − p)Yi (0)}

where p = Pr(f (Xi ) = 1) is the proportion treated under the ITR
3 Difference in PAV between two ITRs
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Neyman’s Inference for the Population Average Value

A natural estimator:

λ̂f =
1
n1

n∑
i=1

Yi f (Xi )Ti︸ ︷︷ ︸
treated units who should

be treated

+
1
n0

n∑
i=1

Yi (1 − f (Xi ))(1 − Ti )︸ ︷︷ ︸
untreated units who should

not be treated

,

Unbiasedness: E(λ̂f ) = λf

Variance:

V(λ̂f ) =
V{f (Xi )Yi (1)}

n1
+

V{(1 − f (Xi ))Yi (0)}
n0

where all observations are used to estimate the variance

Similar results for the PAPE with a negligible finite-sample bias due to
estimation of the proportion treated p
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Using the Same Data for Learning and Evaluation

Cross-fitting procedure:
1 randomly split the data into K folds: Z1, . . . ,ZK

2 learn an ITR using K − 1 folds: f̂−k

3 evaluate it with the held-out set: λ̂f̂−k
(Zk)

4 repeat the process for each k and compute an average

Additional assumption: random splitting
ML algorithm:

F : Z −→ F

where Z train ∈ Z and f̂ = F (Z train) ∈ F
Estimand and unbiased estimator:

λF = E{Yi (f̂Z train(Xi ))}︸ ︷︷ ︸
average performance of F

, λ̂F =
1
K

K∑
k=1

λ̂f̂−k
(Zk)

Unbiasedness: E(λ̂F ) = λF
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Finite-sample Variance with Cross-fitting

Correlation due to the overlap between training and evaluation data:

V(λ̂F ) =
V(λ̂f̂−k

(Zk))

K
+

K − 1
K

Cov(λ̂f̂−k
(Zk), λ̂f̂−k′

(Zk ′))

Useful lemma about cross-validation statistics (Nadeau and Bengio 2003):

Cov(λ̂f̂−k
(Zk), λ̂f̂−k′

(Zk ′)) = V(λ̂f̂−k
(Zk))− E(S2

F )

where S2
F is the sample variance of λ̂f̂−k

(Zk) across K folds
Simplifying the expression gives:

V(λ̂F ) =
V{f̂−kYi (1)}

n1/K
+

V{(1 − f̂−k(Xi ))Yi (0)}
n0/K︸ ︷︷ ︸

variance for a fixed ITR

− K − 1
K

E(S2
F )︸ ︷︷ ︸

efficiency gain
due to cross-fitting

+E
{

Cov(f̂−k(Xi ), f̂−k(Xj) | Xi ,Xj)τiτj

}
≥ E(S2

F )

where i ̸= j and τi = Yi (1)− Yi (0) is the individual treatment effect
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Area Under Prescriptive Effect Curve (AUPEC)

Budget, p

Average outcome

E[Yi (0)]

E[Yi (1)]

E[Yi (f (Xi , c1/n))]

E[Yi (f (Xi , c2/n))]

1
n

2
n

pf

Measure of performance across different budget constraints
Inference is possible with or without cross-fitting
Normalized AUPEC = average percentage gain using an ITR over the
randomized treatment rule across a range of budget contraints
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Simulations

Atlantic Causal Inference Conference data analysis challenge
Data generating process

8 covariates from the Infant Health and Development Program
(originally, 58 covariates and 4,302 observations)
population distribution = original empirical distribution
highly nonlinear model

5-fold cross fitting based on LASSO
std. dev. for n = 500 is roughly half of the fixed n = 100 case

n = 100 n = 500 n = 2000
Estimator cov. bias s.d. cov. bias s.d. cov. bias s.d.
Small effect
PAV 96.9 −0.007 0.261 96.5 −0.003 0.125 97.3 0.001 0.062
PAPE 93.6 −0.000 0.171 93.0 0.000 0.093 95.3 0.001 0.041
Large effect
PAV 96.9 −0.007 0.261 96.5 −0.003 0.125 97.3 0.001 0.062
PAPE 93.6 −0.000 0.171 93.0 0.000 0.093 95.3 0.001 0.041
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Application to the STAR Experiment

Experiment involving 7,000 students across 79 schools
Randomized treatments (kindergarden):

1 Ti = 1: small class (13–17 students)
2 Ti = 0: regular class (22–25)

Outcome: SAT scores
10 covariates: 4 demographic and 6 school characteristics
Sample size: n = 1911, 5-fold cross-fitting

Estimated average treatment effects:
SAT reading: 6.78 (s.e.=1.71)
SAT math: 5.78 (s.e.=1.80)
SAT writing:3.65 (s.e.=1.63)
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Results

ITR performance via PAPE
BART Causal Forest LASSO

est. s.e. treated est. s.e. treated est. s.e. treated
Reading 0.19 0.37 99.3% 0.31 0.77 86.6% 0.32 0.53 87.6%
Math 0.92 0.75 84.7 2.29 0.80 79.1 1.52 1.60 75.2
Writing 1.12 0.86 88.0 1.43 0.71 67.4 0.05 1.37 74.8

AUPEC

AUPEC = 1.75 (s.e. = 2.18)AUPEC = 1.75 (s.e. = 2.18) AUPEC = 1.47 (s.e. = 1.33)AUPEC = 1.47 (s.e. = 1.33) AUPEC = -0.19 (s.e. = 2.00)AUPEC = -0.19 (s.e. = 2.00)

BART Causal Forest LASSO
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2. Heterogeneous Treatment Effects
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Evaluation of Heterogeneous Treatment Effects

How can we make statistical inference for heterogeneous treatment
effects discovered by a generic ML algorithm?
Conditional Average Treatment Effect (CATE):

τ(x) = E(Yi (1)− Yi (0) | Xi = x)

CATE estimation based on ML algorithm

f : X −→ S ⊂ R

Sorted Group Average Treatment Effect (GATES; Chernozhukov et al.
2019)

τk = E(Yi (1)− Yi (0) | pk−1 ≤ Si = f (Xi ) < pk)

for k = 1, 2, . . . ,K where pk is a cutoff (p0 = −∞, pK = ∞)
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GATES Estimation as ITR Evaluation

A natural GATES estimator:

τ̂k =
K

n1

n∑
i=1

YiTi ĝk(Xi )−
K

n0

n∑
i=1

Yi (1 − Ti )ĝk(Xi ),

where ĝk(Xi ) = 1{Si ≥ p̂k(s)} − 1{Si ≥ p̂k−1}
Rewrite τ̂k :

τ̂k = K

{
1
n1

n∑
i=1

YiTi ĝk(Xi ) +
1
n0

n∑
i=1

Yi (1 − Ti )(1 − ĝk(Xi ))︸ ︷︷ ︸
estimated PAV of ĝk

− 1
n0

n∑
i=1

Yi (1 − Ti )︸ ︷︷ ︸
PAV of treat-no-one policy

}

We can directly apply our previous results
Inference for GATES under cross-fitting is possible too
Statistical hypothesis tests of treatment effect heterogeneity 15 / 23



Empirical Application

National Supported Work Demonstration Program (LaLonde 1986)
Temporary employment program to help disadvantaged workers by
giving them a guaranteed job for 9 to 18 months

Data
sample size: n1 = 297 and n0 = 425
outcome: annualized earnings in 1978 (36 months after the program)
7 pre-treatment covariates: demographics and prior earnings

Setup
ML algorithms: Causal Forest, BART, and LASSO
Sample-splitting: 2/3 of the data as training data
Cross-fitting: 3 folds
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GATES Estimates (in 1,000 US Dollars)

τ̂1 τ̂2 τ̂3 τ̂4 τ̂5
Sample-splitting

BART 2.90 −0.73 −0.02 3.25 2.57
[−2.25, 8.06] [−5.05, 3.58] [−3.47, 3.43] [−1.53, 8.03] [−3.82, 8.97]

Causal Forest 3.40 0.13 −0.85 −1.91 7.21
[−1.29, 3.40] [−5.37, 5.63] [−5.22, 3.52] [−5.16, 1.34] [1.22, 13.19]

LASSO 1.86 2.62 −2.07 1.39 4.17
[−3.59, 7.30] [−1.69, 6.93] [−5.39, 1.26] [−2.95, 5.73] [−2.30, 10.65]

Cross-fitting
BART 0.40 −0.15 −0.40 2.52 2.19

[−3.79, 4.59] [−2.54, 2.23] [−3.37, 2.56] [−0.99, 6.03] [−0.73, 5.11]
Causal Forest −3.72 1.05 5.32 −2.64 4.55

[−6.52,−0.93] [−2.28, 4.37] [2.63, 8.01] [−5.07,−0.22] [1.14, 7.96]
LASSO 0.65 0.45 −2.88 1.32 5.02

[−3.65, 4.94] [−3.28, 4.18] [−5.38,−0.38] [−1.83, 4.48] [−0.14, 10.18]
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3. Exceptional Responders
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Identification of Exceptional Responders

In the GATES estimation, the cutoff p is given
Goal: provide a statistical guarantee when selecting p using the data
The problem is trivial if we had an infinite amount of data

p∗ = argmax
p∈[0,1]

Ψ(p) where Ψ(p) = E[Yi (1)− Yi (0)︸ ︷︷ ︸
=ψi

| F (Si ) ≥ p],

1 sample size may not be large
2 ML estimates of CATE may be biased and noisy
3 proportion of exceptional responders may be small

Standard method suffers from multiple testing problem:

p̂n = argmax
p∈[0,1]

Ψ̂n(p) where Ψ̂n(p) =
1
np

⌊np⌋∑
i=1

ψ̂[n,i ]

where S[n,1] ≥ S[n,2], . . . ,≥ S[n,n] and

ψ̂[n,i ] =
T[n,i ]Y[n,i ]

n1/n
−

(1 − T[n,i ])Y[n,i ]

n0/n
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Providing a Statistical Guarantee

(one-sided) Uniform confidence band:

P
(
∀p ∈ [0, 1], Ψ(p) ≥ Ψ̂n(p)− Cn(p, α)

)
≥ 1 − α.

Safe identification of exceptional responders:

p̂
n

= argmax
p∈[0,1]

Ψ̂n(p)− Cn(p, α),

implying

P
(
Ψ(p∗) ≥ Ψ̂n(p̂n)− Cn(p̂n, α)

)
≥ P

(
Ψ(p̂

n
) ≥ Ψ̂n(p̂n)− Cn(p̂n, α)

)
≥ 1 − α.

Other data-driven selection of p is possible: e.g., for a given c

estimate p̂
n
(c) = sup{p ∈ [0, 1] : Ψ̂n(p)− Cn(p, α) ≥ c},

to target p∗(c) = sup{p ∈ [0, 1] : Ψ(p) ≥ c}
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Simulation Studies

A data generating process from the ACIC

ML algorithm Uniform Pointwise
n = 100 n = 500 n = 2500 n = 100 n = 500 n = 2500

BART 96.1% 96.0% 95.2% 87.2% 76.5% 70.3%
Causal Forest 96.0% 95.3% 95.7% 83.7% 77.1% 71.9%
LASSO 95.8% 95.6% 95.6% 84.1% 76.0% 69.8%

n = 100 n = 500 n = 2500
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Empirical Application

Clinical trial data on late-stage prostate cancer (n1 = 125, n0 = 127)
Outcome: total survival in months, Treatment: estrogen
Sample-split (40% train., 60% eval.), ATE estimate −0.3 month

BART Causal Forest LASSO
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Estimated proportion of Estimated 90% uniform
ML algorithm exceptional responders GATES confidence band
Causal Forest 18.8% 27.2 (4.45, ∞)
BART 32.2% 18.1 (2.12, ∞)
LASSO 91.2% 1.35 (−6.26, ∞)
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Concluding Remarks

Causal machine learning (ML) is rapidly becoming popular
estimation of heterogeneous treatment effects (HTEs)
development of individualized treatment rules (ITRs)

Safe deployment of causal ML requires uncertainty quantification
Statistical evaluation of HTEs and ITRs
No modeling assumption, Computational efficiency
Applicable to any complex causal ML algorithms
Good small sample performance

Open source software: evalITR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evalITR

More information: https://imai.fas.harvard.edu/research/
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