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Motivation

Causal inference is a central goal of scientific research

Randomized experiments are not always possible
=⇒ Causal inference in observational studies

Randomized experiments often lack external validity
=⇒ Need to generalize experimental results

Instrumental variables estimates are only applicable to compliers
=⇒ Need to generalize to non-compliers

Common goal: statistically adjust for confounding factors
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Overview of the Talk

1 Review: Propensity score
conditional probability of treatment assignment
propensity score is a balancing score
matching and weighting methods

2 Problem: Propensity score tautology
sensitivity to model misspecification
adhoc specification searches

3 Solution: Covariate balancing propensity score
Estimate propensity score so that covariate balance is optimized

4 Evidence: Reanalysis of two prominent critiques
Improved performance of propensity score weighting and matching

5 Extension: Generalizing experimental estimates
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Propensity Score

Notation:
Ti ∈ {0,1}: binary treatment
Xi : pre-treatment covariates
(Yi (1),Yi (0)): potential outcomes
Yi = Yi (Ti ): observed outcomes

Dual characteristics of propensity score (without assumption):
1 Predicts treatment assignment:

π(Xi ) = Pr(Ti = 1 | Xi )

2 Balances covariates:
Ti ⊥⊥ Xi | π(Xi )
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Rosenbaum and Rubin (1983)

Assumptions:
1 Overlap:

0 < π(Xi ) < 1

2 Unconfoundedness:

{Yi (1),Yi (0)} ⊥⊥ Ti | Xi

The main result: Propensity score as a dimension reduction tool

{Yi(1),Yi(0)} ⊥⊥ Ti | π(Xi)
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Propensity Score Tautology

Propensity score is unknown and must be estimated
Dimension reduction is purely theoretical: must model Ti given Xi
Diagnostics: covariate balance checking

In theory: ellipsoidal covariate distributions
=⇒ equal percent bias reduction
In practice: skewed covariates and adhoc specification searches

Model misspecification is always possible
Propensity score methods can be sensitive to misspecification

Tautology: propensity score methods only work when they work
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Covariate Balancing Propensity Score (CBPS)

Idea: take advantage of propensity score tautology

Recall the dual characteristics of propensity score
1 Predicts treatment assignment
2 Balances covariates

Implied moment conditions:
1 Score condition: sets the first derivative of the log-likelihood to zero

E
{Tiπ

′
β(Xi )

πβ(Xi )
−

(1− Ti )π
′
β(Xi )

1− πβ(Xi )

}
= 0

2 Balancing condition: sets weighted difference in means between
treated an untreated observations to zero

Score condition is a balancing condition

CBPS uses the same propensity score model (e.g., logistic
regression) but estimates it to best satisfy the above conditions
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Weighting Control Group to Balance Covariates

Balancing condition: E
{

TiXi −
πβ(Xi )(1−Ti )Xi

1−πβ(Xi )

}
= 0
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Weighting Both Groups to Balance Covariates

Balancing condition: E
{

Ti Xi
πβ(Xi )

− (1−Ti )Xi
1−πβ(Xi )

}
= 0
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Generalized Method of Moments (GMM) Estimation

Over-identification: more moment conditions than parameters
GMM (Hansen 1982):

β̂GMM = argmin
β∈Θ

ḡβ(T ,X )>Σβ(T ,X )−1ḡβ(T ,X )

where

ḡβ(T ,X ) =
1
N

N∑
i=1

(
score condition

balancing condition

)
︸ ︷︷ ︸

gβ(Ti ,Xi )

“Continuous updating” GMM estimator with the following Σ:

Σβ(T ,X ) =
1
N

N∑
i=1

E(gβ(Ti ,Xi)gβ(Ti ,Xi)
> | Xi)

Newton-type optimization algorithm with MLE as starting values
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Specification Test and Optimal Matching

CBPS is overidentified
Specification test based on Hansen’s J-statistic:

J = n ḡβ(T ,X )>Σβ(T ,X )−1ḡβ(T ,X ) ∼ χ2
k

where k is the number of moment conditions

Can also be used to conduct “optimal” 1-to-N matching
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Kang and Schafer (2007, Statistical Science)

Simulation study: the deteriorating performance of propensity
score weighting methods when the model is misspecified

Can the CBPS save propensity score weighting methods?

4 covariates X ∗i : all are i.i.d. standard normal
Outcome model: linear model
Propensity score model: logistic model with linear predictors
Nonlinear misspecification induced by measurement error:

Xi1 = exp(X ∗i1/2)
Xi2 = X ∗i2/(1 + exp(X ∗1i ) + 10)
Xi3 = (X ∗i1X ∗i3/25 + 0.6)3

Xi4 = (X ∗i1 + X ∗i4 + 20)2
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Weighting Estimators Evaluated

1 Horvitz-Thompson (HT):

1
n

n∑
i=1

{
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)

}
2 Inverse-probability weighting with normalized weights (IPW):

Same as HT but with normalized weights

3 Weighted least squares regression (WLS): linear regression with
HT weights

4 Doubly-robust least squares regression (DR): consistently
estimates the ATE if either the outcome or propensity score model
is correct
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Weighting Estimators Do Fine If the Model is Correct
Bias RMSE

Sample size Estimator GLM True GLM True
(1) Both models correct

n = 200

HT −0.01 0.68 13.07 23.72
IPW −0.09 −0.11 4.01 4.90

WLS 0.03 0.03 2.57 2.57
DR 0.03 0.03 2.57 2.57

n = 1000

HT −0.03 0.29 4.86 10.52
IPW −0.02 −0.01 1.73 2.25

WLS −0.00 −0.00 1.14 1.14
DR −0.00 −0.00 1.14 1.14

(2) Propensity score model correct

n = 200

HT −0.32 −0.17 12.49 23.49
IPW −0.27 −0.35 3.94 4.90

WLS −0.07 −0.07 2.59 2.59
DR −0.07 −0.07 2.59 2.59

n = 1000

HT 0.03 0.01 4.93 10.62
IPW −0.02 −0.04 1.76 2.26

WLS −0.01 −0.01 1.14 1.14
DR −0.01 −0.01 1.14 1.14
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Weighting Estimators are Sensitive to Misspecification
Bias RMSE

Sample size Estimator GLM True GLM True
(3) Outcome model correct

n = 200

HT 24.72 0.25 141.09 23.76
IPW 2.69 −0.17 10.51 4.89

WLS −1.95 0.49 3.86 3.31
DR 0.01 0.01 2.62 2.56

n = 1000

HT 69.13 −0.10 1329.31 10.36
IPW 6.20 −0.04 13.74 2.23

WLS −2.67 0.18 3.08 1.48
DR 0.05 0.02 4.86 1.15

(4) Both models incorrect

n = 200

HT 25.88 −0.14 186.53 23.65
IPW 2.58 −0.24 10.32 4.92

WLS −1.96 0.47 3.86 3.31
DR −5.69 0.33 39.54 3.69

n = 1000

HT 60.60 0.05 1387.53 10.52
IPW 6.18 −0.04 13.40 2.24

WLS −2.68 0.17 3.09 1.47
DR −20.20 0.07 615.05 1.75
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Revisiting Kang and Schafer (2007)

Bias RMSE
Estimator GLM Balance CBPS True GLM Balance CBPS True

(1) Both models correct

n = 200

HT −0.01 2.02 0.73 0.68 13.07 4.65 4.04 23.72
IPW −0.09 0.05 −0.09 −0.11 4.01 3.23 3.23 4.90
WLS 0.03 0.03 0.03 0.03 2.57 2.57 2.57 2.57
DR 0.03 0.03 0.03 0.03 2.57 2.57 2.57 2.57

n = 1000

HT −0.03 0.39 0.15 0.29 4.86 1.77 1.80 10.52
IPW −0.02 0.00 −0.03 −0.01 1.73 1.44 1.45 2.25
WLS −0.00 −0.00 −0.00 −0.00 1.14 1.14 1.14 1.14
DR −0.00 −0.00 −0.00 −0.00 1.14 1.14 1.14 1.14

(2) Propensity score model correct

n = 200

HT −0.32 1.88 0.55 −0.17 12.49 4.67 4.06 23.49
IPW −0.27 −0.12 −0.26 −0.35 3.94 3.26 3.27 4.90
WLS −0.07 −0.07 −0.07 −0.07 2.59 2.59 2.59 2.59
DR −0.07 −0.07 −0.07 −0.07 2.59 2.59 2.59 2.59

n = 1000

HT 0.03 0.38 0.15 0.01 4.93 1.75 1.79 10.62
IPW −0.02 −0.00 −0.03 −0.04 1.76 1.45 1.46 2.26
WLS −0.01 −0.01 −0.01 −0.01 1.14 1.14 1.14 1.14
DR −0.01 −0.01 −0.01 −0.01 1.14 1.14 1.14 1.14
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CBPS Makes Weighting Methods Work Better

Bias RMSE
Estimator GLM Balance CBPS True GLM Balance CBPS True

(3) Outcome model correct

n = 200

HT 24.72 0.33 −0.47 0.25 141.09 4.55 3.70 23.76
IPW 2.69 −0.71 −0.80 −0.17 10.51 3.50 3.51 4.89
WLS −1.95 −2.01 −1.99 0.49 3.86 3.88 3.88 3.31
DR 0.01 0.01 0.01 0.01 2.62 2.56 2.56 2.56

n = 1000

HT 69.13 −2.14 −1.55 −0.10 1329.31 3.12 2.63 10.36
IPW 6.20 −0.87 −0.73 −0.04 13.74 1.87 1.80 2.23
WLS −2.67 −2.68 −2.69 0.18 3.08 3.13 3.14 1.48
DR 0.05 0.02 0.02 0.02 4.86 1.16 1.16 1.15

(4) Both models incorrect

n = 200

HT 25.88 0.39 −0.41 −0.14 186.53 4.64 3.69 23.65
IPW 2.58 −0.71 −0.80 −0.24 10.32 3.49 3.50 4.92
WLS −1.96 −2.01 −2.00 0.47 3.86 3.88 3.88 3.31
DR −5.69 −2.20 −2.18 0.33 39.54 4.22 4.23 3.69

n = 1000

HT 60.60 −2.16 −1.56 0.05 1387.53 3.11 2.62 10.52
IPW 6.18 −0.87 −0.72 −0.04 13.40 1.86 1.80 2.24
WLS −2.68 −2.69 −2.70 0.17 3.09 3.14 3.15 1.47
DR −20.20 −2.89 −2.94 0.07 615.05 3.47 3.53 1.75
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CBPS Sacrifices Likelihood for Better Balance
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Smith and Todd (2005, J. of Econometrics)

LaLonde (1986; Amer. Econ. Rev.):
Randomized evaluation of a job training program
Replace experimental control group with another non-treated group
Current Population Survey and Panel Study for Income Dynamics
Many evaluation estimators didn’t recover experimental benchmark

Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):
Apply propensity score matching
Estimates are close to the experimental benchmark

Smith and Todd (2005):
LaLonde experimental sample rather than DW sample
Dehejia & Wahba (DW)’s results are sensitive to model specification
They are also sensitive to the selection of comparison sample
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Evaluation Design

Observed Data

ATE= $886
(s.e. = $488)

Matching, True Effect = $0

Matching

Experimental
(LaLonde) Sample

Treated,
n = 297

Untreated,
n = 425

Observational
(PSID) Sample

Untreated,
n = 2,915
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Evaluation Design

Experimental Benchmark

ATE= $886
(s.e. = $488)

Matching, True Effect = $0

Matching

Experimental
(LaLonde) Sample

Treated,
n = 297

Untreated,
n = 425

Observational
(PSID) Sample

Untreated,
n = 2,915
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Evaluation Design

Evaluation Bias

ATE= $886
(s.e. = $488)

Matching, True Effect = $0

Matching

Experimental
(LaLonde) Sample

Treated,
n = 297

Untreated,
n = 425

Observational
(PSID) Sample

Untreated,
n = 2,915
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Evaluation Design

Matching Estimator

ATE= $886
(s.e. = $488)

Matching, True Effect = $0

Matching

Experimental
(LaLonde) Sample

Treated,
n = 297

Untreated,
n = 425

Observational
(PSID) Sample

Untreated,
n = 2,915
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Evaluation Bias

Propensity score:
Conditional probability of being in the experimental sample
Logistic regression for propensity score

“True” estimate = 0
Nearest neighbor matching with replacement

CBPS reduces bias:

1–to–1 Matching Optimal 1–to–N Matching
Specification GLM Balance CBPS GLM Balance CBPS
Linear −835 −568 −302 −1022 −265 −67

(886) (898) (869) (499) (492) (487)
Quadratic −1570 −950 −1036 −1209 −950 −480

(1003) (882) (831) (558) (617) (512)
Smith & Todd (2005) −1859 −1074 −1298 −1810 −1164 −419

(1004) (860) (800) (500) (485) (464)
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Comparison with the Experimental Benchmark

LaLonde, Dehejia and Wahba, and others did this comparison
Experimental estimate: $866 (s.e. = 488)
LaLonde+PSID pose a challenge:

GenMatch: −$412 (s.e. = 553)
CEM: −$29 (s.e. = 452)
ebal: −$203 (s.e. = 256)

CBPS gives estimates closer to experimental benchmark:

1–to–1 Matching Optimal 1–to–N Matching
Model specification GLM Balance CBPS GLM Balance CBPS
Linear −835 −568 −302 −430 507 123

(1374) (1811) (1849) (749) (822) (799)
Quadratic −919 −379 −379 −419 193 439

(1245) (1219) (1140) (558) (617) (512)
Smith & Todd (2005) −811 −507 −131 −811 −487 289

(1225) (1189) (1058) (1225) (676) (673)
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Extensions to Other Causal Inference Settings

Propensity score methods are widely applicable

Thus, CBPS is also widely applicable

Extensions in progress:
1 Non-binary treatment regimes
2 Causal inference with longitudinal data
3 Generalizing experimental estimates
4 Generalizing instrumental variable estimates

In many of these situations, balance checking is difficult
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Generalizing Experimental Estimates

Lack of external validity for experimental estimates
Target population P
Experimental sample: Si = 1 with i = 1,2, . . . ,Ne

Non-experimental sample: Si = 0 with i = Ne + 1, . . . ,N
Sampling on observables: {Yi(1),Yi(0)} ⊥⊥ Si | Xi

Propensity score: πβ(Xi) = Pr(Si | Xi)

Score equation: logistic likelihood
Balancing between experimental and non-experimental sample:

E

{
Si X̃i

πβ(Xi)
− (1− Si)X̃i

1− πβ(Xi)

}
= 0

Can also balance weighted treatment and control groups
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Concluding Remarks

Covariate balancing propensity score:
1 simultaneously optimizes prediction of treatment assignment and

covariate balance under the GMM framework
2 is robust to model misspecification
3 improves propensity score weighting and matching methods
4 can be extended to various situations

Open-source software, CBPS: R Package for Covariate
Balancing Propensity Score, is available at CRAN
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