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@ Causal inference is a central goal of scientific research

@ Randomized experiments are not always possible
— Causal inference in observational studies

@ Randomized experiments often lack external validity
—> Need to generalize experimental results

@ Instrumental variables estimates are only applicable to compliers
= Need to generalize to non-compliers

@ Common goal: statistically adjust for confounding factors



© Review: Propensity score

e conditional probability of treatment assignment
@ propensity score is a balancing score
e matching and weighting methods

© Problem: Propensity score tautology

e sensitivity to model misspecification
e adhoc specification searches

© Solution: Covariate balancing propensity score
e Estimate propensity score so that covariate balance is optimized

© Evidence: Reanalysis of two prominent critiques
e Improved performance of propensity score weighting and matching

© Extension: Generalizing experimental estimates



@ Notation:
e T; € {0,1}: binary treatment
e X;: pre-treatment covariates
e (Y;(1), Yi(0)): potential outcomes
e Y; = Yi(T;): observed outcomes

@ Dual characteristics of propensity score (without assumption):
@ Predicts treatment assignment:
m(Xj) = Pr(Ti=1]X))

@ Balances covariates:
Ti L X | m(Xj)



@ Assumptions:

@ Overlap:
0<m(X) <1

@ Unconfoundedness:

{Yi(1),i(0)} L T; | X

@ The main result: Propensity score as a dimension reduction tool

{Yi(1),Yi(0)} IL T | =(X;)



Propensity score is unknown and must be estimated

e Dimension reduction is purely theoretical: must model T; given X;
e Diagnostics: covariate balance checking

In theory: ellipsoidal covariate distributions
— equal percent bias reduction

In practice: skewed covariates and adhoc specification searches

Model misspecification is always possible
Propensity score methods can be sensitive to misspecification

Tautology: propensity score methods only work when they work



@ Idea: take advantage of propensity score tautology

@ Recall the dual characteristics of propensity score

@ Predicts treatment assignment
@ Balances covariates

@ Implied moment conditions:
@ Score condition: sets the first derivative of the log-likelihood to zero

E{ Timp(Xi) (1 - Ti)ﬂ',ﬁ(xi)}

m(Xi) 1 —7s(X)

@ Balancing condition: sets weighted difference in means between
treated an untreated observations to zero

@ Score condition is a balancing condition

@ CBPS uses the same propensity score model (e.g., logistic
regression) but estimates it to best satisfy the above conditions



@ Balancing condition: E{T,-X,- — %;(_Xg)x’} =0
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@ Balancing condition: E{W;‘())%) - 1(1_;;())()’0)} —0
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@ Over-identification: more moment conditions than parameters
@ GMM (Hansen 1982):

BGMM = ar;@grgin QB(T,X)TZQ(T,X)_1Q5(T,X)
S

where

M_Lz

T X) _ ( score condition )

o balancing condition
i= _

95(Ti,X)

@ “Continuous updating” GMM estimator with the following ¥:

N
1
To(T.X) = D E(gs(Ti, X)gs(Ti X)) " | X))
i=1

@ Newton-type optimization algorithm with MLE as starting values



@ CBPS is overidentified
@ Specification test based on Hansen’s J-statistic:

J=n QB(T7 X)Tzﬂ(T7 X)_1gﬁ(T’ X) ~ Xi
where k is the number of moment conditions

@ Can also be used to conduct “optimal” 1-to-N matching



@ Simulation study: the deteriorating performance of propensity
score weighting methods when the model is misspecified

@ Can the CBPS save propensity score weighting methods?

@ 4 covariates X;": all are i.i.d. standard normal
@ Outcome model: linear model

@ Propensity score model: logistic model with linear predictors
@ Nonlinear misspecification induced by measurement error:
Xir = exp(X;; /2)

Xz = Xip/(1 + exp(X7;) +10)

Xia = (X7 X;5/25 + 0.6)°

Xia = (X; + X3 +20)?



@ Horvitz-Thompson (HT):

22 {5 0 )

i=1

© Inverse-probability weighting with normalized weights (IPW):
Same as HT but with normalized weights

© Weighted least squares regression (WLS): linear regression with
HT weights

© Doubly-robust least squares regression (DR): consistently
estimates the ATE if either the outcome or propensity score model
is correct



Bias RMSE
Sample size  Estimator GLM True GLM True
(1) Both models correct
HT  —0.01 0.68 13.07 23.72
IPW —0.09 —0.11 4.01 4.90

n =200 WLS 0.03 003 257 257
DR 003 003 257 257
HT  —003 029 486 1052
1000 IPW  —002 —0.01 173 225

WLS —0.00 —0.00 1.14 1.14
DR —0.00 —0.00 1.14 1.14

(2) Propensity score model correct
HT -032 -0.17 12.49 23.49
IPW  -0.27 -0.35 3.94 4.90

n =200 WLS -007 -007 259 259
DR -007 -007 259 259
HT 003 0.01 493 1062
— 1000 IPW —002 -004 176 226

WLS  -0.01 —0.01 1.14 1.14
DR —-0.01 —0.01 1.14 1.14




Bias RMSE
Sample size  Estimator GLM True GLM True
(3) Outcome model correct
HT 24.72 0.25 141.09 23.76

n— 200 IPW 2.69 -0.17 10.51 4.89
WLS —1.95 0.49 3.86 3.31

DR 0.01 0.01 2.62 2.56

HT 69.13 —0.10  1329.31 10.36

n — 1000 IPW 6.20 —0.04 13.74 2.23
WLS —2.67 0.18 3.08 1.48

DR 0.05 0.02 4.86 1.15

(4) Both models incorrect
HT 25.88 -0.14 186.53 23.65

n— 200 IPW 2.58 —-0.24 10.32 4.92
WLS —1.96 0.47 3.86 3.31

DR —5.69 0.33 39.54 3.69

HT 60.60 0.05 1387.53 10.52

n = 1000 IPW 6.18 —0.04 13.40 2.24
WLS —2.68 0.17 3.09 1.47

DR = —20.20 0.07 615.05 1.75




Bias RMSE
Estimator GLM Balance CBPS True | GLM Balance CBPS True
(1) Both models correct
HT —0.01 202 0.73 0.68| 13.07 4.65 4.04 23.72
IPW -0.09 0.05 -0.09 —-0.11| 4.01 3.23 323 4.90

n=200 s 003 003 003 003| 257 257 257 257
DR 003 003 003 003 257 257 257 257
HT 003 039 015 029 486 177 1.80 1052
1000 PW 002 000 003 —001| 173 144 145 225

WLS -0.00 -0.00 -0.00 —0.00| 1.14 114 1.14 1.14
DR —-0.00 -0.00 -0.00 —0.00| 1.14 114 114 114
(2) Propensity score model correct
HT —-032 188 055 —-0.17| 1249 467 4.06 23.49
IPW  -027 -0.12 -0.26 -0.35| 394 326 327 4.90

n =200 WLS -0.07 -0.07 -0.07 -0.07| 259 259 259 259
DR —-0.07 -0.07 -0.07 —0.07| 259 259 259 259
HT 003 038 015 001 493 175 1.79 10.62
n = 1000 IPW —0.02 —-0.00 —-0.03 —0.04| 176 145 1.46 226

WLS -0.01 -0.01 -0.01 —-0.01| 1.14 114 114 1.14
DR -0.01 -0.01 -0.01 -0.01] 114 114 114 114




CBPS Makes Weighting Methods Work Better

Bias RMSE

Estimator GLM Balance CBPS True GLM  Balance CBPS True

(3) Outcome model correct
HT 24.72 0.33 —0.47 0.25| 141.09 455 3.70 23.76
n— 200 IPW 269 -0.71 —-0.80 —0.17| 10.51 3.50 3.51 4.89
WLS —-195 —-2.01 —-1.99 049 3.86 3.88 3.88 3.31
DR 0.01 0.01 = 0.01 0.01 2.62 256 256 2.56
HT 69.13 —-2.14 —1.55 —0.10(1329.31 3.12 2.63 10.36
n— 1000 IPW 6.20 —0.87 —-0.73 —0.04| 13.74 187 1.80 223
WLS —-2.67 —-268 —2.69 0.18 3.08 3.183 3.14 1.48
DR 0.05 0.02 0.02 0.02 4.86 1.16 1.16 1.15

(4) Both models incorrect
HT 25.88 0.39 —-0.41 —0.14| 186.53 464 3.69 23.65
n — 200 IPW 258 -0.71 —-0.80 —0.24| 10.32 3.49 350 492
WLS -196 -2.01 —-2.00 0.47 3.86 3.88 3.88 3.31
DR —-569 -220 —2.18 0.33] 39.54 422 423 3.69
HT 60.60 —-2.16 —1.56 0.05/1387.53 3.11 262 10.52
n— 1000 IPW 6.18 -0.87 —-0.72 —0.04| 13.40 1.86 1.80 224
WLS —2.68 -2.69 —-270 0.17 3.09 3.14 315 147
DR —-20.20 -2.89 —2.94 0.07| 615.05 3.47 358 1.75
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Covariate Imbalance

Log-Likelihood
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@ Lalonde (1986; Amer. Econ. Rev.):

e Randomized evaluation of a job training program

Replace experimental control group with another non-treated group
Current Population Survey and Panel Study for Income Dynamics
Many evaluation estimators didn’t recover experimental benchmark

@ Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):

e Apply propensity score matching
e Estimates are close to the experimental benchmark

@ Smith and Todd (2005):

o Lalonde experimental sample rather than DW sample
e Dehejia & Wahba (DW)’s results are sensitive to model specification
e They are also sensitive to the selection of comparison sample



Observed Data
Experimental
(LaLonde) Sample

Observational
(PSID) Sample
Treated,
n =297
Untreated,
n=2,915
Untreated,
n =425




ATE= $886
(s.e. = $488)

Experimental Benchmark

Experimental
(LaLonde) Sample

Treated,
n =297

Untreated,

n =425

Observational
(PSID) Sample

Untreated,
n=2,915




Evaluation Bias
Experimental
(LaLonde) Sample

Observational
(PSID) Sample
Treated,

n=297

Untreated,

n=2,915

Untreated,

n =425
Matching, True Effect = $0




Matching Estimator

Experimental
(LaLonde) Sample

Observational
(PSID) Sample
Treated, Matching

n =297
Untreated,
n=2,915
Untreated,
n =425




@ Propensity score:

e Conditional probability of being in the experimental sample
o Logistic regression for propensity score

@ “True” estimate =0
@ Nearest neighbor matching with replacement

@ CBPS reduces bias:

1-to—1 Matching Optimal 1—to—N Matching

Specification GLM Balance = CBPS GLM Balance  CBPS
Linear —835 —568 —-302 | —1022 —265 —67
(886) (898) (869) (499) (492) (487)

Quadratic —1570 —950 —1036 | —1209 —950 —480

(1003)  (882)  (831) | (558)  (617) (512)
Smith & Todd (2005) —1859  —1074 —1298 | —1810 —1164 —419
(1004)  (860)  (800) | (500)  (485)  (464)




@ Lalonde, Dehejia and Wahba, and others did this comparison

@ Experimental estimate: $866 (s.e. = 488)
@ Lalonde+PSID pose a challenge:
e GenMatch: —%$412 (s.e. = 553)

o CEM: —$29 (s.e. = 452)
e ebal: —$203 (s.e. = 256)

@ CBPS gives estimates closer to experimental benchmark:

1—to—1 Matching

Optimal 1-to—N Matching

Model specification GLM Balance = CBPS GLM Balance = CBPS
Linear —835 —568 —302 —430 507 123
(1374) (1811)  (1849) (749) (822)  (799)
Quadratic -919 -379 -379 —419 193 439
(1245) (1219)  (1140) (558) (617)  (512)
Smith & Todd (2005) —811 -507 —-131 —811 —487 289
(1225) (1189) (1058) | (1225) (676)  (673)
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@ Propensity score methods are widely applicable

@ Thus, CBPS is also widely applicable

@ Extensions in progress:
@ Non-binary treatment regimes
@ Causal inference with longitudinal data
© Generalizing experimental estimates
© Generalizing instrumental variable estimates

@ In many of these situations, balance checking is difficult



@ Lack of external validity for experimental estimates

@ Target population P

@ Experimental sample: S§;=1withi=1,2,... N,

@ Non-experimental sample: S;=0withi=Ng+1,....N

@ Sampling on observables: {Y;(1), Y;(0)} 1L S; | X;

@ Propensity score: mg(X;) = Pr(S; | X;)

@ Score equation: logistic likelihood

@ Balancing between experimental and non-experimental sample:

SXi  (1-S)X | _
E{m(Xi) 1—m(x,-)} -0

@ Can also balance weighted treatment and control groups



@ Covariate balancing propensity score:
@ simultaneously optimizes prediction of treatment assignment and
covariate balance under the GMM framework
@ is robust to model misspecification
© improves propensity score weighting and matching methods
© can be extended to various situations

@ Open-source software, CEBPS: R Package for Covariate
Balancing Propensity Score, is available at CRAN
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