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Motivation

Generative AI is transforming medicine, education, marketing, etc.
Can methodologists get some help from GenAI too?
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Using GenAI to Improve Statistical Inference

GenAI-Powered Inference (GPI)
GenAI-assisted statistical/causal inference with unstructured data

1 (re)generate unstructured data at scale
2 obtain true internal representation from GenAI
3 use it directly for machine learning without fine tuning

Advantages:
no need to estimate representation
avoid functional form assumptions
better empirical performance
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Generative AI: Definition and Assumption

Deep generative model:

P(Xi | hγ(Ri )),

P(Ri | Pi ).

Pi : prompt
Xi : unstructured generated
Ri : hidden states or internal representations
hγ(Ri ): deterministic function from hidden states to the last layer

Deterministic decoding:

P(Xi | hγ(Ri )) is degenerate

can be achieved by setting a hyperparameter
use of open-source GenAI and deterministic encoding for replicability
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Motivating Application: Texts-as-Treatments

Candidate biography experiment (Fong and Grimmer, 2016)

1246 biographies of American politicians scraped from Wikipedia
1,886 voters as respondents
randomly assign biographies to voters
feeling thermometer [0, 100] as the outcome

Analysis
supervised topic model to discover 10 treatment features
estimate the average treatment effects of estimated topic proportions

Existing approaches for texts-as-treatments:
1 model-based approach (e.g., Egami et al. 2022; Fong and Grimmer, 2023)
2 causal representation learning based on fine-tuned BERT embedding

(e.g., Veitch et al. 2020; Pryzant et al. 2021; Gui and Veitch, 2023)
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Example Biographies
Candidate biography with military background
Anthony Higgins was born in Red Lion Hundred in New Castle County, Delaware.
He attended Newark Academy and Delaware College, and graduated from Yale
College in 1861, where he was a member of Skull and Bones. After studying
law at the Harvard Law School, he was admitted to the bar in 1864 and began
practice in Wilmington, Delaware. He also served for a time in the United States
Army in 1864.
Candidate biography without military background
Benjamin Tappan was born in Northampton, Massachusetts, the second child and
oldest son of Benjamin Tappan and Sarah (Homes) Tappan, who was a grandniece
of Benjamin Franklin. Two of his younger brothers were abolitionists Arthur
Tappan and Lewis Tappan. He attended the public schools in Northampton and
traveled to the West Indies in his youth. He apprenticed as a printer and engraver,
also studying painting with Gilbert Stuart. He read law to be admitted to the bar
in Hartford, Connecticut, in 1799. Later that year, he moved to the Connecticut
Western Reserve and founded what is now Ravenna, Ohio, laying out the original
village in 1808. He married, March 20, 1801, Nancy Wright, sister of John C.
Wright (congressman), afterwards a United States House of Representatives from
Ohio. They had one son, Benjamin, born in 1812.
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Setup

Notation
Yi (x): Potential outcome when exposed to treatment object x
Yi = Yi (Xi ): Outcome (collected from the survey respondents)
Ti : Binary treatment feature (e.g., military experiences)
Ui : Confounding features (e.g., college education)

Assumptions
1 Treatment Feature:

Ti = gT (Xi )

2 Confounding Features:

Ui = gU(Xi ) where dim(Ui ) ≪ dim(Xi )

3 Separability:
Yi (x) = Yi (gT (x), gU(x)),

1 T is not a function of U : there exists no function g̃T such that
gT (x) = g̃T (gU(x))

2 U is not a function of T : there exist no functions g̃U and g ′ such that
gU(x) = g̃U(gT (x), g ′(x)) for all x and gU(1, g ′(x ′)) ̸= gU(0, g ′(x ′))
for some x ′
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Summary of Assumptions

Assumptions:

P R hγ(R) X

U = gU(X )

T = gT (X )

Y

Deep generative model

Overlap: The above assumptions imply that for any t ∈ {0, 1} and
u ∈ U , we have

P(Ti = t | Ui = u) > 0.

8 / 30



Nonparametric Identification

Average treatment effect (ATE):

τ := E[Yi (1,Ui )− Yi (0,Ui )]

Under these assumptions, there exists a Deconfounder f : Rr → Rq

with q ≤ r such that

Yi⊥⊥Ri | Ti = t, f (Ri ), t ∈ {0, 1}

Deconfounder does not have to be unique
Example: Confounding Features Ui (deterministic function of Ri )

By adjusting for this Deconfounder, we can identify the marginal
distribution of potential outcome as

P(Yi (t,Ui ) = y) =

∫
Rr

P(Yi = y | Ti = t, f (Ri ))dF (Ri ),

Direct adjustment for Ri leads to the lack of overlap
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Estimation and Inference

Ri f (Ri ;λ)

µ1(f (Ri ;λ);θ1)

µ0(f (Ri ;λ);θ0)

Yi | Ti = 1: Treated obs.

Yi | Ti = 0: Control obs.

1 Estimate the outcome models and deconfounder via TarNet (Shalit et al.

2017):

{λ̂, θ̂0, θ̂1} = argmin
λ,θ0,θ1

1
n

n∑
i=1

{Yi − µTi
(f (Ri ;λ);θTi

)}2

2 Estimate the propensity score using the estimated Deconfounder

π(f (Ri , λ̂)) = P(Ti = 1 | f (Ri , λ̂))

Popular DragonNet (Shi et al. 2019) jointly estimates the outcome models,
propensity score, and deconfounder, leading to the lack of overlap
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Double Machine Learning (Chernozhukov et al. 2018)

Cross-fitting:
1 randomly divide the data into K folds
2 for each k = 1, . . . ,K , use the kth fold as the test set and the

remaining k − 1 folds as the training set
1 randomly split the training set further into two subsets
2 use the first subset to estimate outcome models and deconfounder
3 use the second subset to estimate propensity score given the estimated

deconfounder
3 Compute the ATE estimator as:

τ̂ =
1
nK

K∑
k=1

∑
i :I (i)=k

µ̂
(−k)
1 (f̂ (−k)(Ri ))− µ̂

(−k)
0 (f̂ (−k)(Ri ))

+
Ti{Yi − µ̂

(−k)
1 (f̂ (−k)(Ri ))}

π̂(−k)(f̂ (−k)(Ri ))
− (1 − Ti ){Yi − µ̂

(−k)
0 (f̂ (−k)(Ri ))}

1 − π̂(−k)(f̂ (−k)(Ri ))

Double robustness, asymptotic normality
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Practical Implementation Details

Internal representation extracted from LLM is still high-dimensional:

dim(R) = number of tokens × 4096 for Llama 3 (8 billion parameters)

Pooling strategies depend on deep generative models
BERT: the first special classification token [CLS]
Llama 3: the hidden states of the last token

TarNet requires hyperparameter tuning
size and depth of layers
learning rate
maximum epoch size

Use of automatic hyperparameter optimization methods (e.g., Optuna)
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Simulation Study Setup

A simulation based on the candidate biography experiment
Create 4,000 sets of the first, middle, and last names of political
candidates via randomly sampling from the Fong and Grimmer data
Use Llama 3 to generate a biography for each US political candidate’s
Instruct LLM to repeat the same texts for reuse

The data generating process:

Yi = α1Ti + α2Tih1(Xi )− α3h1(Xi )− α4h2(Xi ) + ϵi

where ϵi ∼ N (µi , 1) and
Ti : military background (binary)
h1(Xi ): topic-model based confounder
h2(Xi ): sentiment-analysis based confounder

2 × 3 = 6 scenarios:
1 separability holds or does not hold (separate or overlapping topics)
2 weak, medium, or strong confounding
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Simulation Results
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Performance across Different Sample Sizes

Bias RMSE Coverage
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Empirical Analysis

Analyze the original survey by Fong and Grimmer (2016)
1,246 Congressional candidate biographies from Wikipedia
1,886 survey participants with a total of 5,291 observations
evaluate a biography using the feeling thermometer [0, 100]
Keyword-based treatment coding: “military”, “war”, “veteran”, or “army”
use text-reuse approach with Llama 3

Methods ATE 95% Conf. Int. Runtime

Proposed method (reuse) 5.462 [2.790, 8.135] 28.9 sec.
Outcome model with BERT −2.557 [−2.608, −2.505] 6139.7
DML with BERT −67.777 [−109.967, −25.587] 6210.3
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Predictive Effects of Image Features (Lindholm et al. 2024)

How does the visual appearance of political candidate predict their
electoral success?
Data: 7,080 Danish politicians with candidate photos

Prediction variables: facial features (continuous scores)
1 attractiveness
2 trustworthiness
3 dominance

Discretize them into 10 bins
Outcome: Election results (number of votes standardized via z-score)
Structured confounding variables: age, gender, education
We wish to adjust other facial confounding features
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Empirical Analysis

Reproduce all images using Stable diffusion (ver. 1.5)
Original image:

dim(X ) = 304(width)× 304(height)× 3(RGB) = 277248

Internal representation: dim(R) = 16384

Neural network architecture:
dim(f (R)) = 1024
depth of hidden layers = 2
size of hidden layers after deconfounder = [200, 1]

Nonparametrically estimate the average predictive effect

ξt := E[Yi (t,Ui )]

DML with a multi-valued treatment
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Empirical Results
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GPI is less sensitive to the inclusion of structured confounding
variables than OLS
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Text as Confounder: Chinese Censorship (Roberts et al. 2020)

Do Chinese social media users who had their post censored become
more likely to be censored for later posts or self-censor themselves?

Treatment: whether or not a post was censored
Outcomes: censorship during four weeks after a censored post

1 number of posts
2 proportion of censored posts
3 proportion of missing posts

structural confounders: lagged outcomes, date of the post (dummies)
text-as-confounder: contents of posts

Original analysis: Matching (CEM) with topic proportions (STM) and
propensity score (inverse regression)

Our reanalysis:
Text reuse with Llama 3
Apply the proposed method:

1 entire sample (4155 users; 75324 Weibo posts)
2 matched sample (628 users; 879 posts)
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Assumptions

P R hγ(R) X U = gU(X )

T

Y

Z

Deep generative model

Y : outcome (censorship)
T : treatment (previous censorship)
Z : observed structured confounding variables
X : unstructured confounding object
U = gU(X ): unknown and unstructured confounding variables

Strong latent ignorability:

{Yi (t)}t∈T ⊥⊥ Ti | Zi = z ,Ui = u, for all z ∈ Z,u ∈ U
P(Ti = t | Zi = z ,Ui = u) > 0 for all t ∈ T , z ∈ Z,u ∈ U
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Empirical Analysis

Reproduced all the texts using open-source LLaMa3–8B
Internal representation: last token of the final layer, dim(R) = 4080

Automated hyperparameter tuning via Optuna (Akiba et al. 2019)

dim(f (R)) = 2048
depth of hidden layers = 2
size of hidden layers after deconfounder = [50, 1]

2-fold cross-fitting:
clustered standard errors at the user level
truncation of extreme propensity scores (Dorn, 2025)
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Empirical Results

Number of Posts Rate of Censorship Rate of Missing Posts
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Our analysis shows higher rates of censorship and self-censorship
Full sample analysis is much more efficient
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Residual Correlations with Candidate Confounder

Candidate confounder: proportion of 60 keywords related to censorship
and self-censorship (Fu et al. 2013)

Spearman’s rank correlation between GPI’s estimated efficient score
and the candidate confounder
Residual correlation from the implied weighted OLS for text matching
p-value in parentheses

GPI (LLaMA3-8B) GPI (Gemma3-1B) Text matching
Outcome Full Matched Full Matched Matched

Number of posts 0.004 0.028 0.000 −0.036 0.039
(0.259) (0.421) (0.849) (0.318) (0.078)

Rate of censorship −0.001 0.020 0.001 0.007 0.074
(0.779) (0.580) (0.676) (0.189) (0.001)

Rate of missing posts −0.002 −0.038 0.005 −0.012 −0.022
(0.612) (0.307) (0.102) (0.777) (0.344)
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Structural Model of Texts: Persuasion and Rhetoric
(Blumenau and Lauderdale, 2022)

Which types of political rhetorics are most persuasive?

Forced choice conjoint experiment with texts
Total of 336 political arguments

12 policy issues: tuition fees, fracking, etc.
14 rhetorical elements: cost and benefit, morality, etc.
for or against

Outcome: Persuasiveness of arguments
one argument is more persuasive than the other
equally persuasive
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Example Text Pair

Policy topic: building a third runaway at Heathrow:

Appeal to authority / For
The Airports Commission, an independent body established to
study the issue, have argued that expanding Heathrow is the most
effective option to address the UK’s aviation capacity challenge

Appeal to history / Against
History show us that most large infrastructure projects do not lead
to significant economic growth, which suggests that the expansion
of Heathrow will fail to pay for itself

Can we adjust for the unstructured confounding features of texts?
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The Structural Model

The original Bradley-Terry type model:

log

[P(Yjj ′(i) ≤ k)

P(Yjj ′(i) > k)

]
= δk +

(
αPjSj + βTj

+ γj
)
−
(
αPj′Sj′ + βTj′ + γj ′

)
where i indexes respondents, j indexes arguments, Pj denotes policy
area, Sj denotes for/against, and Tj denotes rhetoric
Our semiparametric model:

log

[P(Yj(i),j ′(i) ≤ k)

P(Yj(i),j ′(i) > k)

]
= δk + µ(Tj ,Uj)− µ(Tj ′ ,Uj ′)

Persuasiveness of rhetoric Tj = t

β(t) := E[µ(t,Uj)]

Estimate β(t) using the deconfounder f (Rj)
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Empirical Analysis

Reproduce all texts using Llama3–8B
Internal representation: last token of the final layer, dim(R) = 4096
Neural network architecture:

dim(f (R)) = 1024
depth of hidden layers = 2
size of hidden layers after deconfounder = [200, 1]

Quantify uncertainty via Monte Carlo dropout (Gal and Ghahramani 2016)

Also tried Llama3.3-70B and Gemma1 1B
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Empirical Findings

Ad hominem

Metaphor

Appeal to populism
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Public Opinion
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Stronger effects for ad hominem, appeal to authority, and cost/benefit
Findings are similar across models
Smaller standard errors for newer models 29 / 30



Concluding Remarks

Generative AI can be used to improve causal inference
can generate treatments at scale
enables the extraction of true internal representation
better causal representation learning

Open-source software GPI is available at
https://gpi-pack.github.io/

Further extensions
causal inference with multimodal data (e.g., videos)
interpretation of estimated deconfounder
discovery of treatment concepts
policy learning with unstructured treatments
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