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Motivation and Overview

@ 100th anniversary of Jerzy Neyman's dissertation

@ potential outcomes notation
@ randomization inference for the average treatment
effect

@ Rise of causal machine learning (causal ML)

@ heterogeneous treatment effects
@ individualized treatment rules

@ Experimental evaluation of causal ML under Neyman's framework

@ causal ML algorithms may not work well in practice
@ assumption-free uncertainty quantification is essential

@ Today's talk will show how to experimentally evaluate:
@ individualized treatment rules derived by causal ML
@ heterogeneous treatment effects discovered by causal ML
© exceptional responders identified by causal ML

2/25



Neyman's Repeated Sampling Framework

@ Notation: n experimental units
@ T, €{0,1}: binary treatment
@ Yi(t) where t € {0,1}: potential outcomes
© Y= Y;(T;): observed outcome

@ Assumptions:
@ no interference between units: Yi(Ty =t1,..., T, =1t,) = Yi{(Ti = t;)
@ randomization of treatment assignment: {Y;(1), Y;(0)} 1L T;
© random sampling of units: {Y;(1), Y;(0)} Hdop

e Causal estimand and estimator
@ average treatment effect (ATE): 7 = E(Y;(1) — Y:(0))

@ Finite sample results
© unbiasedness: E(7) =7
@ variance: V(7) = W + Y(vi(9))

No
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1. Individualized Treatment Rules
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Experimental Evaluation of Individualized Treatment Rules

o Consider a fixed (for now) individualized treatment rule (ITR):
f(Xi) € {0,1}

where X; is a set of pre-treatment covariates

o ITR is obtained from an external dataset (e.g., sample splitting)
e no assumption about ITR (e.g., any causal ML, heuristic rule)

@ Evaluation metric examples:
@ Population average value (PAV)

Ar = E{Yi(f(X)}
@ Population average prescriptive effect (PAPE)
v = E{Yi(f(X;)) — pYi(1) — (1 - p)Yi(0)}

where p = Pr(f(X;) = 1) is the proportion treated under the ITR
© Difference in PAV between two ITRs
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Neyman's Inference for the Population Average Value

@ A natural estimator:

Zw )T +—ZY1—f N1 - T),

treated units who should untreated units who should
be treated not be treated

@ Unbiasedness: E(j\f) = Af

@ Variance:

N VA{F(X;)Y;(1 V{(1 - f(X;))Y;(0

V() = {()()}+ {( (Xi))Yi(0)}
n no

where all observations are used to estimate the variance

@ Similar results for the PAPE with a negligible finite-sample bias due to
estimation of the proportion treated p
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Using the Same Data for Learning and Evaluation

o Cross-fitting procedure:

@ randomly split the data into K folds: Zi,..., Zk

@ learn an ITR using K — 1 folds: f,k

© evaluate it with the held-out set: S\f,k(zk)

@ repeat the process for each k and compute an average

@ Additional assumption: random splitting
o ML algorithm:
F:Z2—F

where Ztin ¢ Z and f = F(Z"") e F

e Estimand and unbiased estimator:
R . 1.
A= EQYi(fzean(X))} . Ar = 0D 8 (Z)
k=1

average performance of F

o Unbiasedness: E(Ar) = A\r
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Finite-sample Variance with Cross-fitting

@ Correlation due to the overlap between training and evaluation data:

. V(A (Z )
V(AF) = (f‘}k(( k))+KK Cov(Ap (Zi), s (Zi))

@ Useful lemma about cross-validation statistics (Nadeau and Bengio 2003):

Cov(Ar (Z).Ar (Zk) = V(A (Zk)) — E(S?)

where S is the sample variance of S\f_k(Zk) across K folds
@ Simplifying the expression gives:

Sy ViE i) +V{(1—f_k(X,-))Y,-(O)} K-1g

A _
V() m/K no/K K E0F)
efficiency gain
due to cross-fitting

+E { Cov(Fi(X). (X)) | X X)miry } = B(S)

where i # j and 7; = Y;(1) — Y;(0) is the individual treatment effect
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Area Under Prescriptive Effect Curve (AUPEC)

Average outcome

~—
~—
—_—

IE[Yi(f(xhcé/n
E[Yi(f(Xi, c1/n))]

Budget, p

@ Measure of performance across different budget constraints
@ Inference is possible with or without cross-fitting
@ Normalized AUPEC = average percentage gain using an ITR over the

randomized treatment rule across a range of budget contraints
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Simulations

o Atlantic Causal Inference Conference data analysis challenge
@ Data generating process

e 8 covariates from the Infant Health and Development Program

(originally, 58 covariates and 4,302 observations)

e population distribution = original empirical distribution

o highly nonlinear model
@ 5-fold cross fitting based on LASSO
@ std. dev. for n = 500 is roughly half of the fixed n = 100 case

n =100 n = 500 n = 2000

Estimator cov. bias s.d. | cov. bias sd. | cov. bias sd.
Small effect
PAV 96.9 —0.007 0.261 | 96.5 —0.003 0.125 | 97.3 0.001 0.062
PAPE 93.6 —0.000 0.171 | 93.0 0.000 0.093 | 95.3 0.001 0.041
Large effect
PAV 96.9 —0.007 0.261 | 96.5 —0.003 0.125 | 97.3 0.001 0.062
PAPE 93.6 —0.000 0.171 | 93.0 0.000 0.093 | 95.3 0.001 0.041
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Application to the STAR Experiment

Experiment involving 7,000 students across 79 schools

Randomized treatments (kindergarden):
@ T, =1: small class (13-17 students)
@ T, = 0: regular class (22-25)

Outcome: SAT scores

10 covariates: 4 demographic and 6 school characteristics

Sample size: n = 1911, 5-fold cross-fitting

Estimated average treatment effects:

o SAT reading: 6.78 (s.e.=1.71)
e SAT math: 5.78 (s.e.=1.80)
o SAT writing:3.65 (s.e.=1.63)
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Results

o ITR performance via PAPE

BART Causal Forest LASSO
est. s.e. treated| est. s.e. treated| est. s.e. treated
Reading 0.19 0.37 99.3% | 0.31 0.77 86.6% | 0.32 0.53 87.6%
Math 0.92 0.75 84.7 229 080 79.1 1.52 1.60 75.2
Writing 1.12 0.86 88.0 143 0.71 67.4 0.05 1.37 74.8
e AUPEC
BART Causal Forest LASSO
0.)6500 AUPEC = 1.75 (s.e. = 2.18) AUPEC = 1.47 (s.e. = 1.33) AUPEC =-0.19 (s.e. = 2.00)
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2. Heterogeneous Treatment Effects
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Evaluation of Heterogeneous Treatment Effects

@ How can we make statistical inference for heterogeneous treatment
effects discovered by a generic ML algorithm?

Conditional Average Treatment Effect (CATE):

T(x) = E(Yi(1) = Yi(0) | Xi = x)

CATE estimation based on ML algorithm

f:X—SCR

Sorted Group Average Treatment Effect (GATES; Chernozhukov et al.
2019)

e = E(Yi(1) = Y;(0) | px—1 < S; = F(X) < px)

for k=1,2,..., K where py is a cutoff (pg = —o0, px = )
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GATES Estimation as ITR Evaluation

@ A natural GATES estimator'

n—lZYT,gk —723/ (1-T,

where g (X;) = 1{S; > pi(s)} — 1{S; > Pk—l}
@ Rewrite 7:

P { ZYTMX+—§)ﬂ— )1 — &(X))

£(X0).

~~

estimated PAV of gx

1 n
m;mkm}

PAV of treat-no-one policy

@ We can directly apply our previous results
@ Inference for GATES under cross-fitting is possible too

@ Statistical hypothesis tests of treatment effect heterogeneity
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Empirical Application

e National Supported Work Demonstration Program (LaLonde 1986)

@ Temporary employment program to help disadvantaged workers by
giving them a guaranteed job for 9 to 18 months

@ Data

e sample size: n; = 297 and ng = 425
e outcome: annualized earnings in 1978 (36 months after the program)
e 7 pre-treatment covariates: demographics and prior earnings

e Setup
e ML algorithms: Causal Forest, BART, and LASSO
o Sample-splitting: 2/3 of the data as training data
o Cross-fitting: 3 folds
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GATES Estimates (in 1,000 US Dollars)

T1 T2 T3 T4 75
Sample-splitting
BART 2.90 —-0.73 —0.02 3.25 2.57
[-2.25,8.06] |[—5.05,3.58] | [—3.47,3.43] | [-1.53,8.03] | [—3.82,8.97]
Causal Forest 3.40 0.13 —0.85 —1.91 7.21
[—1.29,3.40] |[-5.37,5.63] | [—5.22,3.52] | [—5.16,1.34] | [1.22,13.19]
LASSO 1.86 2.62 —2.07 1.39 4.17
[-3.59,7.30] |[-1.69,6.93] | [-5.39,1.26] | [-2.95,5.73] |[—2.30,10.65]
Cross-fitting
BART 0.40 —0.15 —0.40 2.52 2.19
[-3.79,4.59] |[-2.54,2.23] | [-3.37,2.56] | [-0.99,6.03] | [—0.73,5.11]
Causal Forest —3.72 1.05 5.32 —2.64 4.55
[—6.52, —0.93] | [-2.28,4.37] | [2.63,8.01] |[-5.07,—0.22]| [1.14,7.96]
LASSO 0.65 0.45 —2.88 1.32 5.02
[—3.65,4.94] |[—3.28,4.18] | [-5.38,—0.38] | [—1.83,4.48] |[-0.14,10.18]
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3. Exceptional Responders
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|dentification of Exceptional Responders

@ In the GATES estimation, the cutoff p is given
@ Goal: provide a statistical guarantee when selecting p using the data
@ The problem is trivial if we had an infinite amount of data

p* = argmax W(p) where W(p) = E[Y(1) - Y,(0) | F(S) = pl,
pG[O,l] f

@ sample size may not be large =V

@ ML estimates of CATE may be biased and noisy

© proportion of exceptional responders may be small

e Standard method suffers from multiple testing problem:

Lnp]
pn = argmaxW,(p) where W,( — Zw[n i
p€[0,1]
where 5[,771] > S[n,Q], ey > S[n,n] and
o T (L Tni) Yind)
[n,l] n]_/n no/n
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Providing a Statistical Guarantee
o (one-sided) Uniform confidence band:
P (vp € [0.1], W(p) = Va(p) = Colp.0)) 2 1-a.
o Safe identification of exceptional responders:

p = argmax\TJ,,(p) — Co(p, @),
- pel0,1]

implying
P(W(p") = Ua(p,) ~ CalB,,0)) = P (W(B,) = Wa(p,) ~ Calp, )
> 1—a.
@ Other data-driven selection of p is possible: e.g., for a given ¢
estimate p (c) = sup{p € [0,1]: Vo(p) — Calp, ) > ¢},
to target p*(c) = sup{p € [0,1]:¥(p) > c}
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Constructing Uniform Confidence Band

o

2]

Obtain finite-sample bias bound and variance of W,(p) using our
previous result

Use a generalized version of Donsker's invariance principle to show: for
i=1,2,....n

Un(5) 2V =5V 2, (oo

Show sorted individual treatment effects are non-negatively correlated
Cov(thpni Ypnjp) =0 forany1<i<j<n

Use Slepian’s Lemma to bound non-negatively correlated and
normalized pW,(p) by an appropriately scaled Wiener process

Approximate the confidence band by minimizing the area

]P(W(t) < Bo+ BVt Wt e [0,1]) >1-a
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Minimum-Area Confidence Band

Confidence Band Type - * p=0 pi=0.05 k=0 k=0.499
Tim P (Vp € 0.11.9(p) > ¥up) - 2L\ fy(@,1) - i () V(w?n(p))) >1-a
where {85 (), f1 ()} are the solution to:

1
argmin / Bo + f1V/t dt subject to P (W(t) < Bo + BiV't, Vt €0, 1]) >1—a.
0

Bo,B1ER?
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Simulation Studies

e A data generating process from the ACIC

ML algorithm Uniform Pointwise
n=100 n=500 n=2500 | =100 n=500 n=2500
BART 96.1% 96.0% 95.2% 87.2% 76.5% 70.3%
Causal Forest 96.0% 95.3% 95.7% 83.7% 77.1% 71.9%
LASSO 95.8% 95.6% 95.6% 84.1% 76.0% 69.8%
n =100 n =500 n = 2500
10.0
75
g 5.0
o
25
0.0

0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00 0.00 025 050 075 1.00

Confidence Band Type = Uniform = = Pointwise
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Empirical Application

@ Clinical trial data on late-stage prostate cancer (n; = 125, ng = 127)
e Outcome: total survival in months, Treatment: estrogen
@ Sample-split (40% train., 60% eval.), ATE estimate —0.3 month

BART Causal Forest LASSO

o
3

N
o

N
a

Increase in Total Survival (Months)
o

&
3

H [ I
0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75%  100%
Maximum Proportion Treated

Estimated proportion of Estimated 90% uniform
ML algorithm | exceptional responders GATES  confidence band

Causal Forest 18.8% 27.2 (4.45, o)
BART 32.2% 18.1 (2.12, o)
LASSO 91.2% 1.35 (—6.26, 00)
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Concluding Remarks

e Causal machine learning (ML) is rapidly becoming popular

o estimation of heterogeneous treatment effects (HTEs)
o development of individualized treatment rules (ITRs)

Safe deployment of causal ML requires uncertainty quantification
e Neyman's framework for experimental evaluation of HTEs and ITRs
o No modeling assumption, Computational efficiency
o Applicable to any complex causal ML algorithms
e Good small sample performance

@ Open source software: evallTR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evallTR

More information: https://imai.fas.harvard.edu/research/
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