Neyman Meets Causal Machine Learning

Kosuke Imai

Harvard University

October 18, 2023

Statistics Seminar
Department of Statistics
University of Wisconsin, Madison

Joint work with Michael Lingzhi Li (Harvard Business School)

Motivation and Overview

- 100th anniversary of Jerzy Neyman's dissertation
 - potential outcomes notation
 - 2 randomization inference for the average treatment effect

- heterogeneous treatment effects
- individualized treatment rules

- Experimental evaluation of causal ML under Neyman's framework
 - causal ML algorithms may not work well in practice
 - assumption-free uncertainty quantification is essential
- Today's talk will show how to experimentally evaluate:
 - individualized treatment rules derived by causal ML
 - 4 heterogeneous treatment effects discovered by causal ML
 - exceptional responders identified by causal ML

Neyman's Repeated Sampling Framework

- Notation: *n* experimental units
 - $T_i \in \{0,1\}$: binary treatment
 - 2 $Y_i(t)$ where $t \in \{0,1\}$: potential outcomes
 - 3 $Y_i = Y_i(T_i)$: observed outcome
- Assumptions:
 - **1** no interference between units: $Y_i(T_1 = t_1, ..., T_n = t_n) = Y_i(T_i = t_i)$
 - 2 randomization of treatment assignment: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp T_i$
 - 3 random sampling of units: $\{Y_i(1), Y_i(0)\} \stackrel{\text{i.i.d.}}{\sim} \mathcal{P}$
- Causal estimand and estimator
 - **①** average treatment effect (ATE): $\tau = \mathbb{E}(Y_i(1) Y_i(0))$
 - ② difference-in-means estimator: $\hat{\tau} = \frac{1}{n_1} \sum_{i=1}^n Y_i T_i \frac{1}{n_0} \sum_{i=1}^n (1 T_i) Y_i$
- Finite sample results
 - unbiasedness: $\mathbb{E}(\hat{\tau}) = \tau$
 - 2 variance: $\mathbb{V}(\hat{\tau}) = \frac{\mathbb{V}(Y_i(1))}{n_1} + \frac{\mathbb{V}(Y_i(0))}{n_0}$

1. Individualized Treatment Rules

Experimental Evaluation of Individualized Treatment Rules

• Consider a fixed (for now) individualized treatment rule (ITR):

$$f(X_i) \in \{0,1\}$$

where X_i is a set of pre-treatment covariates

- ITR is obtained from an external dataset (e.g., sample splitting)
- no assumption about ITR (e.g., any causal ML, heuristic rule)
- Evaluation metric examples:
 - Population average value (PAV)

$$\lambda_f = \mathbb{E}\{Y_i(f(X_i))\}$$

Population average prescriptive effect (PAPE)

$$\gamma_f = \mathbb{E}\{Y_i(f(X_i)) - pY_i(1) - (1-p)Y_i(0)\}$$

where $p = Pr(f(X_i) = 1)$ is the proportion treated under the ITR

3 Difference in PAV between two ITRs

Neyman's Inference for the Population Average Value

A natural estimator:

$$\hat{\lambda}_{f} = \frac{1}{n_{1}} \underbrace{\sum_{i=1}^{n} Y_{i} f(X_{i}) T_{i}}_{\text{treated units who should}} + \frac{1}{n_{0}} \underbrace{\sum_{i=1}^{n} Y_{i} (1 - f(X_{i})) (1 - T_{i})}_{\text{untreated units who should}},$$

- Unbiasedness: $\mathbb{E}(\hat{\lambda}_f) = \lambda_f$
- Variance:

$$\mathbb{V}(\hat{\lambda}_f) = \frac{\mathbb{V}\{f(X_i)Y_i(1)\}}{n_1} + \frac{\mathbb{V}\{(1-f(X_i))Y_i(0)\}}{n_0}$$

where all observations are used to estimate the variance

• Similar results for the PAPE with a negligible finite-sample bias due to estimation of the proportion treated *p*

Using the Same Data for Learning and Evaluation

- Cross-fitting procedure:
 - **1** randomly split the data into K folds: Z_1, \ldots, Z_K
 - 2 learn an ITR using K-1 folds: \hat{f}_{-k}
 - **3** evaluate it with the held-out set: $\hat{\lambda}_{\hat{f}_{k}}(Z_{k})$
 - repeat the process for each k and compute an average
- Additional assumption: random splitting
- ML algorithm:

$$F: \mathcal{Z} \longrightarrow \mathcal{F}$$

where
$$Z^{\mathsf{train}} \in \mathcal{Z}$$
 and $\hat{f} = F(Z^{\mathsf{train}}) \in \mathcal{F}$

Estimand and unbiased estimator:

$$\lambda_F = \underbrace{\mathbb{E}\{Y_i(\hat{f}_{Z^{\text{train}}}(X_i))\}}_{\text{average performance of }F}, \quad \hat{\lambda}_F = \frac{1}{K}\sum_{k=1}^K \hat{\lambda}_{\hat{f}_{-k}}(Z_k)$$

• Unbiasedness: $\mathbb{E}(\hat{\lambda}_F) = \lambda_F$

Finite-sample Variance with Cross-fitting

Correlation due to the overlap between training and evaluation data:

$$\mathbb{V}(\hat{\lambda}_F) = \frac{\mathbb{V}(\hat{\lambda}_{\hat{f}_{-k}}(Z_k))}{K} + \frac{K-1}{K} \mathsf{Cov}(\hat{\lambda}_{\hat{f}_{-k}}(Z_k), \hat{\lambda}_{\hat{f}_{-k'}}(Z_{k'}))$$

• Useful lemma about cross-validation statistics (Nadeau and Bengio 2003):

$$\mathsf{Cov}(\hat{\lambda}_{\hat{f}_{-k}}(Z_k),\hat{\lambda}_{\hat{f}_{-k'}}(Z_{k'})) \ = \ \mathbb{V}(\hat{\lambda}_{\hat{f}_{-k}}(Z_k)) - \mathbb{E}(S_F^2)$$

where S_F^2 is the sample variance of $\hat{\lambda}_{\hat{f}_{-k}}(Z_k)$ across K folds

Simplifying the expression gives:

$$\mathbb{V}(\hat{\lambda}_F) = \underbrace{\frac{\mathbb{V}\{\hat{f}_{-k}Y_i(1)\}}{n_1/K} + \frac{\mathbb{V}\{(1 - \hat{f}_{-k}(X_i))Y_i(0)\}}{n_0/K}}_{\text{variance for a fixed ITR}} - \underbrace{\frac{K - 1}{K}\mathbb{E}(S_F^2)}_{\text{efficiency gain due to cross-fitting}} \\ + \mathbb{E}\left\{ \text{Cov}(\hat{f}_{-k}(X_i), \hat{f}_{-k}(X_j) \mid X_i, X_j)\tau_i\tau_j \right\} \geq \mathbb{E}(S_F^2)$$

where $i \neq j$ and $\tau_i = Y_i(1) - Y_i(0)$ is the individual treatment effect

Area Under Prescriptive Effect Curve (AUPEC)

- Measure of performance across different budget constraints
- Inference is possible with or without cross-fitting
- Normalized AUPEC = average percentage gain using an ITR over the randomized treatment rule across a range of budget contraints

Simulations

- Atlantic Causal Inference Conference data analysis challenge
- Data generating process
 - 8 covariates from the Infant Health and Development Program (originally, 58 covariates and 4,302 observations)
 - population distribution = original empirical distribution
 - highly nonlinear model
- 5-fold cross fitting based on LASSO
- std. dev. for n = 500 is roughly half of the fixed n = 100 case

	n = 100			n = 500			n = 2000		
Estimator	cov.	bias	s.d.	cov.	bias	s.d.	cov.	bias	s.d.
Small effect									
PAV	96.9	-0.007	0.261	96.5	-0.003	0.125	97.3	0.001	0.062
PAPE	93.6	-0.000	0.171	93.0	0.000	0.093	95.3	0.001	0.041
Large effect									
PAV	96.9	-0.007	0.261	96.5	-0.003	0.125	97.3	0.001	0.062
PAPE	93.6	-0.000	0.171	93.0	0.000	0.093	95.3	0.001	0.041

Application to the STAR Experiment

- Experiment involving 7,000 students across 79 schools
- Randomized treatments (kindergarden):
 - $T_i = 1$: small class (13–17 students)
 - 2 $T_i = 0$: regular class (22–25)
- Outcome: SAT scores
- 10 covariates: 4 demographic and 6 school characteristics
- Sample size: n = 1911, 5-fold cross-fitting
- Estimated average treatment effects:
 - SAT reading: 6.78 (s.e.=1.71)
 - SAT math: 5.78 (s.e.=1.80)
 - SAT writing:3.65 (s.e.=1.63)

Results

• ITR performance via PAPE

	BART			Causal Forest			LASSO		
	est.	s.e.	treated	est.	s.e.	treated	est.	s.e.	treated
Reading	0.19	0.37	99.3%	0.31	0.77	86.6%	0.32	0.53	87.6%
Math	0.92	0.75	84.7	2.29	0.80	79.1	1.52	1.60	75.2
Writing	1.12	0.86	88.0	1.43	0.71	67.4	0.05	1.37	74.8

AUPEC

2. Heterogeneous Treatment Effects

Evaluation of Heterogeneous Treatment Effects

- How can we make statistical inference for heterogeneous treatment effects discovered by a generic ML algorithm?
- Conditional Average Treatment Effect (CATE):

$$\tau(x) = \mathbb{E}(Y_i(1) - Y_i(0) \mid X_i = x)$$

CATE estimation based on ML algorithm

$$f: \mathcal{X} \longrightarrow \mathcal{S} \subset \mathbb{R}$$

 Sorted Group Average Treatment Effect (GATES; Chernozhukov et al. 2019)

$$\tau_k = \mathbb{E}(Y_i(1) - Y_i(0) \mid p_{k-1} \leq S_i = f(X_i) < p_k)$$

for
$$k=1,2,\ldots,K$$
 where p_k is a cutoff $(p_0=-\infty,\,p_K=\infty)$

GATES Estimation as ITR Evaluation

A natural GATES estimator:

$$\hat{\tau}_k = \frac{K}{n_1} \sum_{i=1}^n Y_i T_i \hat{g}_k(X_i) - \frac{K}{n_0} \sum_{i=1}^n Y_i (1 - T_i) \hat{g}_k(X_i),$$

where $\hat{g}_k(X_i) = 1\{S_i \ge \hat{p}_k(s)\} - 1\{S_i \ge \hat{p}_{k-1}\}$

• Rewrite $\hat{\tau}_k$:

$$\hat{\tau}_{k} = K \left\{ \underbrace{\frac{1}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} \hat{g}_{k}(X_{i}) + \frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) (1 - \hat{g}_{k}(X_{i}))}_{\text{estimated PAV of } \hat{g}_{k}} - \underbrace{\frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i})}_{\text{PAV of treat-no-one policy}} \right\}$$

- We can directly apply our previous results
- Inference for GATES under cross-fitting is possible too
- Statistical hypothesis tests of treatment effect heterogeneity

Empirical Application

- National Supported Work Demonstration Program (LaLonde 1986)
- Temporary employment program to help disadvantaged workers by giving them a guaranteed job for 9 to 18 months
- Data
 - sample size: $n_1 = 297$ and $n_0 = 425$
 - outcome: annualized earnings in 1978 (36 months after the program)
 - 7 pre-treatment covariates: demographics and prior earnings
- Setup
 - ML algorithms: Causal Forest, BART, and LASSO
 - Sample-splitting: 2/3 of the data as training data
 - Cross-fitting: 3 folds

GATES Estimates (in 1,000 US Dollars)

	•		•	•	_
	$\hat{ au}_1$	$\hat{ au}_2$	$\hat{ au}_3$	$\hat{ au}_4$	$\hat{ au}_5$
Sample-splitting					
BART	2.90	-0.73	-0.02	3.25	2.57
	[-2.25, 8.06]	[-5.05, 3.58]	[-3.47, 3.43]	[-1.53, 8.03]	[-3.82, 8.97]
Causal Forest	3.40	0.13	-0.85	-1.91	7.21
	[-1.29, 3.40]	[-5.37, 5.63]	[-5.22, 3.52]	[-5.16, 1.34]	[1.22, 13.19]
LASSO	1.86	2.62	-2.07	1.39	4.17
	[-3.59, 7.30]	[-1.69, 6.93]	[-5.39, 1.26]	[-2.95, 5.73]	[-2.30, 10.65]
Cross-fitting					
BART	0.40	-0.15	-0.40	2.52	2.19
	[-3.79, 4.59]	[-2.54, 2.23]	[-3.37, 2.56]	[-0.99, 6.03]	[-0.73, 5.11]
Causal Forest	-3.72	1.05	5.32	-2.64	4.55
	[-6.52, -0.93]	[-2.28, 4.37]	[2.63, 8.01]	[-5.07, -0.22]	[1.14, 7.96]
LASSO	0.65	0.45	-2.88	1.32	5.02
	[-3.65, 4.94]	[-3.28, 4.18]	[-5.38, -0.38]	[-1.83, 4.48]	[-0.14, 10.18]

3. Exceptional Responders

Identification of Exceptional Responders

- In the GATES estimation, the cutoff *p* is given
- Goal: provide a statistical guarantee when selecting p using the data
- The problem is trivial if we had an infinite amount of data

$$p^* = \operatorname*{argmax}_{p \in [0,1]} \Psi(p) \quad \text{where } \Psi(p) = \mathbb{E}[\underbrace{Y_i(1) - Y_i(0)}_{=\psi_i} \mid F(S_i) \geq p],$$

- sample size may not be large
- ML estimates of CATE may be biased and noisy
- proportion of exceptional responders may be small
- Standard method suffers from multiple testing problem:

$$\begin{split} \hat{p}_n &= \mathop{\mathrm{argmax}}_{p \in [0,1]} \widehat{\Psi}_n(p) \quad \text{where } \widehat{\Psi}_n(p) \ = \ \frac{1}{np} \sum_{i=1}^{\lfloor np \rfloor} \hat{\psi}_{[n,i]} \end{split}$$
 where $S_{[n,1]} \geq S_{[n,2]}, \ldots, \geq S_{[n,n]}$ and

$$\hat{\psi}_{[n,i]} = \frac{T_{[n,i]}Y_{[n,i]}}{n_1/n} - \frac{(1 - T_{[n,i]})Y_{[n,i]}}{n_0/n}$$

Providing a Statistical Guarantee

• (one-sided) Uniform confidence band:

$$\mathbb{P}\left(\forall p \in [0,1], \ \Psi(p) \geq \widehat{\Psi}_n(p) - C_n(p,\alpha)\right) \geq 1 - \alpha.$$

• Safe identification of exceptional responders:

$$\underline{\hat{p}}_n = \underset{p \in [0,1]}{\operatorname{argmax}} \widehat{\Psi}_n(p) - C_n(p,\alpha),$$

implying

$$\mathbb{P}\left(\Psi(p^*) \geq \widehat{\Psi}_n(\underline{\hat{p}}_n) - C_n(\underline{\hat{p}}_n, \alpha)\right) \geq \mathbb{P}\left(\Psi(\underline{\hat{p}}_n) \geq \widehat{\Psi}_n(\underline{\hat{p}}_n) - C_n(\underline{\hat{p}}_n, \alpha)\right)$$
$$\geq 1 - \alpha.$$

ullet Other data-driven selection of p is possible: e.g., for a given c

$$\begin{array}{ll} \text{estimate} & \underline{\hat{p}}_{n}(c) &= \sup\{p \in [0,1]: \widehat{\Psi}_{n}(p) - C_{n}(p,\alpha) \geq c\}, \\ \text{to target} & p^{*}(c) &= \sup\{p \in [0,1]: \Psi(p) \geq c\} \end{array}$$

Constructing Uniform Confidence Band

- ① Obtain finite-sample bias bound and variance of $\widehat{\Psi}_n(p)$ using our previous result
- ② Use a generalized version of Donsker's invariance principle to show: for $i=1,2,\ldots,n$

$$\left(\frac{\mathbb{V}(\frac{i}{n}\widehat{\Psi}_{n}(\frac{i}{n}))}{\mathbb{V}(\widehat{\Psi}_{n}(1))}, \frac{\frac{i}{n}\Psi(\frac{i}{n}) - \frac{i}{n}\widehat{\Psi}_{n}(\frac{i}{n})}{\sqrt{\mathbb{V}(\widehat{\Psi}_{n}(1))}}\right) \xrightarrow{D} (p, G(p)).$$

Show sorted individual treatment effects are non-negatively correlated

$$\operatorname{Cov}(\hat{\psi}_{[n,i]}, \hat{\psi}_{[n,j]}) \ge 0$$
 for any $1 \le i < j \le n$

- ① Use Slepian's Lemma to bound non-negatively correlated and normalized $p\widehat{\Psi}_n(p)$ by an appropriately scaled Wiener process
- Approximate the confidence band by minimizing the area

$$\mathbb{P}\left(W(t) \leq \beta_0 + \beta_1 \sqrt{t}, \ \forall t \in [0, 1]\right) \geq 1 - \alpha$$

Minimum-Area Confidence Band

$$\lim_{n\to\infty}\mathbb{P}\left(\forall p\in[0,1], \Psi(p)\geq\widehat{\Psi}_n(p)-\frac{\beta_0^*(\alpha)}{p}\sqrt{\mathbb{V}(\widehat{\Psi}_n(1))}-\beta_1^*(\alpha)\sqrt{\mathbb{V}(\widehat{\Psi}_n(p))}\right)\geq 1-\alpha$$
 where $\{\beta_0^*(\alpha),\beta_1^*(\alpha)\}$ are the solution to:

$$\underset{\beta_0,\beta_1\in\mathbb{R}^2_+}{\operatorname{argmin}} \int_0^1 \beta_0 + \beta_1 \sqrt{t} \ dt \ \text{ subject to } \ \mathbb{P}\left(W(t) \leq \beta_0 + \beta_1 \sqrt{t}, \ \forall t \in [0,1]\right) \geq 1 - \alpha.$$

Simulation Studies

A data generating process from the ACIC

ML algorithm		Uniform			Pointwise	
	n = 100	n = 500	n = 2500	n = 100	n = 500	n = 2500
BART	96.1%	96.0%	95.2%	87.2%	76.5%	70.3%
Causal Forest	96.0%	95.3%	95.7%	83.7%	77.1%	71.9%
LASSO	95.8%	95.6%	95.6%	84.1%	76.0%	69.8%

Empirical Application

- Clinical trial data on late-stage prostate cancer $(n_1 = 125, n_0 = 127)$
- Outcome: total survival in months, Treatment: estrogen
- Sample-split (40% train., 60% eval.), ATE estimate −0.3 month

	Estimated proportion of	Estimated	90% uniform
ML algorithm	exceptional responders	GATES	confidence band
Causal Forest	18.8%	27.2	$(4.45, \infty)$
BART	32.2%	18.1	$(2.12, \infty)$
LASSO	91.2%	1.35	$(-6.26, \infty)$

Concluding Remarks

- Causal machine learning (ML) is rapidly becoming popular
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Safe deployment of causal ML requires uncertainty quantification
 - Neyman's framework for experimental evaluation of HTEs and ITRs
 - No modeling assumption, Computational efficiency
 - Applicable to any complex causal ML algorithms
 - Good small sample performance
- Open source software: evalITR: Evaluating Individualized Treatment Rules at CRAN https://CRAN.R-project.org/package=evalITR
- More information: https://imai.fas.harvard.edu/research/