Difference-in-Differences and Fixed Effects

Kosuke Imai

Harvard University

Spring 2021

Motivation

- How should we conduct causal inference when repeated measurements are available?
- Two types of variations:
 - cross-sectional variation within each time period
 - 2 temporal variation within each unit
- Before-and-after and cross-sectional designs

Can we exploit both variations?

Minimum Wage and Unemployment

(Card and Krueger. 1994. Am. Econ. Rev)

- How does the increase in minimum wage affect employment?
- Many economists believe the effect is negative
 - especially for the poor
 - also for the whole economy
- Hard to randomize the minimum wage increase
- In 1992, NJ minimum wage increased from \$4.25 to \$5.05
 - Neighboring PA stays at \$4.25
 - Observe employment in both states before and after increase
- NJ and (eastern) PA are similar
- Fast food chains in NJ and PA are similar: price, wages, products, etc.
- They are most likely to be affected by this increase

Difference-in-Differences Design

Parallel trend assumption

- Setup:
 - Two time periods: time 0 (pre-treatment), time 1 (post-treatment)
 - G_i : treatment ($G_i = 1$) or control ($G_i = 0$) group
 - $Z_{it} = tG_i$: treatment assignment indicator for t = 0, 1
 - Potential outcomes: $Y_{i0}(0)$, $Y_{i0}(1)$, $Y_{i1}(0)$, $Y_{i1}(1)$
 - Observed outcomes: $Y_{it} = Y_{it}(Z_{it})$
- Average treatment effect for the treated:

$$\tau = \mathbb{E}\{Y_{i1}(1) - Y_{i1}(0) \mid G_i = 1\}$$

Parallel trend assumption:

$$\mathbb{E}\{Y_{i1}(0) - Y_{i0}(0) \mid G_i = 1\} = \mathbb{E}\{Y_{i1}(0) - Y_{i0}(0) \mid G_i = 0\}$$

DiD estimator:

$$\hat{\tau}_{\text{DiD}} = \{\underbrace{\mathbb{E}(Y_{i1} \mid G_i = 1) - \mathbb{E}(Y_{i0} \mid G_i = 1)}_{\text{difference for treated}} - \{\underbrace{\mathbb{E}(Y_{i1} \mid G_i = 0) - \mathbb{E}(Y_{i0} \mid G_i = 0)}_{\text{difference for control}}\}$$

Applicable to repeated cross-section data as well

Linear Model for the Difference-in-Differences

• Two-way fixed effects model:

$$Y_{it}(z) = \alpha_i + \beta t + \tau z + \epsilon_{it}$$

- $\mathbb{E}\{Y_{i0}(0)\} = \alpha_i$
- $\mathbb{E}\{Y_{i1}(0)\} = \alpha_i + \beta$
- $\mathbb{E}\{Y_{i1}(1)\} = \alpha_i + \beta + \tau$
- $\mathbb{E}\{Y_{i1}(1) Y_{i1}(0)\} = \tau$
- Parallel trend assumption:
 - $\mathbb{E}\{Y_{i1}(0) Y_{i0}(0) \mid G_i = g\} = \beta$
 - Or equivalently $\mathbb{E}(\epsilon_{i1} \epsilon_{i0} \mid G_i = g) = 0$
 - Both Z_{it} and ϵ_{it} can depend on α_i or unobserved confounders
- Least squares estimator equals the nonparametric DiD estimator, i.e., $\hat{\tau}_{\rm FE}=\hat{\tau}_{\rm DiD}$
- \bullet This equivalence does not hold in general beyond the 2 \times 2 case

Comparison with the Lagged Outcome Model

Lagged outcome model:

$$Y_{i1}(z) = \alpha + \rho Y_{i0} + \tau z + \epsilon_i(z)$$

Nonparametric identification assumption:

$$\{Y_{i1}(1), Y_{i1}(0)\} \perp \!\!\!\perp Z_{it} \mid Y_{i0}$$

- can be made conditional on X_i as well as Y_{i0}
- neither stronger nor weaker than the parallel trend assumption
- same as parallel trend if $\mathbb{E}(Y_{i0} \mid G_i = 1) = \mathbb{E}(Y_{i0} \mid G_i = 0)$
- Where does the imbalance in lagged outcome come from?
 - Difference-in-Differences → unobserved time-invariant confounder
 - Lagged outcome directly affects treatment assignment

Difference-in-Differences and Lagged Outcome Estimators

Least squares estimator:

$$\hat{\tau}_{LD} = \underbrace{\mathbb{E}(Y_{i1} \mid G_i = 1) - \mathbb{E}(Y_{i1} \mid G_i = 0)}_{\text{difference for time 1}} \\ - \hat{\rho}\{\underbrace{\mathbb{E}(Y_{i0} \mid G_i = 1) - \mathbb{E}(Y_{i0} \mid G_i = 0)}_{\text{difference for time 0}}\}$$

- If $\hat{\rho} = 1$, then $\hat{\tau}_{LD} = \hat{\tau}_{DiD}$
- Assume $0 \le \rho < 1$ (stationarity)
- Without loss of generality, assume $\mathbb{E}(Y_{i0} \mid G_i = 1) \geq \mathbb{E}(Y_{i0} \mid G_i = 0)$ (monotonicity)
 - If parallel trend holds, $\mathbb{E}(\hat{\tau}_{LD}) \geq \mathbb{E}(\hat{\tau}_{DiD}) = \tau$
 - ② If ignorability holds, $\tau = \mathbb{E}(\hat{\tau}_{LD}) \geq \mathbb{E}(\hat{\tau}_{DiD})$
- Bracketing relationship: $\mathbb{E}(\hat{\tau}_{LD}) \geq \tau \geq \mathbb{E}(\hat{\tau}_{DiD})$
- Similar result holds nonparametrically (Ding and Li. 2019. Political Anal.)

Adjusting for Baseline Covariates

Parallel trend assumption conditional on the baseline covaraites:

$$\mathbb{E}\{Y_{i1}(0) - Y_{i0}(0) \mid \mathbf{X}_i = \mathbf{x}, G_i = 1\}$$

= $\mathbb{E}\{Y_{i1}(0) - Y_{i0}(0) \mid \mathbf{X}_i = \mathbf{x}, G_i = 0\}$ for all \mathbf{x}

- Matching: parallel trend within a pair or a strata
- Weighting (Abadie. 2005. Rev. Econ. Stud):

$$\mathbb{E}\{Y_{i1}(1) - Y_{i1}(0) \mid G_i = 1\}$$

$$= \mathbb{E}\left[\frac{Y_{i1} - Y_{i0}}{\Pr(G_i = 1)} \cdot \frac{G_i - \Pr(G_i = 1 \mid \mathbf{X}_i)}{1 - \Pr(G_i = 1 \mid \mathbf{X}_i)}\right]$$

where $Pr(G_i = 1 \mid \mathbf{X}_i)$ is the propensity score

 Unconditional parallel trend assumption neither implies nor is implied by conditional parallel trend assumption

Fixed Effects Regression in Causal Inference

- Regression models with fixed effects are the primary workhorse for causal inference with panel data
- Researchers use them to adjust for unobserved time-invariant confounders (omitted variables, endogeneity, selection bias, ...)
 - "Good instruments are hard to find ..., so we'd like to have other tools to deal with unobserved confounders. This chapter considers ... strategies that use data with a time or cohort dimension to control for unobserved but fixed omitted variables"
 (Angrist & Pischke. 2009. Mostly Harmless Econometrics)
 - "fixed effects regression can scarcely be faulted for being the bearer of bad tidings" (Green et al. 2001. Int. Organ.)
- What are the causal assumptions of regressions with fixed effects?
- How are these models related to other causal inference methods?

Unit Fixed Effects Regression (Imai and Kim. 2019. Am. J. Political Sci)

- One-way fixed effects linear regression: $Y_{it} = \alpha_i + \beta X_{it} + \epsilon_{it}$
- Strict exogeneity: $\mathbb{E}(\epsilon_{it} \mid \mathbf{X}_i, \alpha_i) = \mathbf{0}$
- Nonparametric structural equation model:

$$Y_{it} = g_1(X_{it}, \mathbf{U}_i, \epsilon_{it})$$

 $X_{it} = g_2(X_{i1}, \dots, X_{i,t-1}, \mathbf{U}_i, \eta_{it})$

- past treatments do not affect the current outcome
- past outcomes do not affect the current outcome
- past outcomes do not affect the current treatment

Past Outcomes Directly Affect Current Outcome

- Identification is still possible
- Past outcomes do not confound $X_{it} \longrightarrow Y_{it}$ given \mathbf{U}_i
- No need to adjust for past outcomes

Past Treatments Directly Affect Current Outcome

- Past treatments as confounders to be adjusted
- Strict exogeneity holds given past treatments and U_i
- Impossible to adjust for an entire treatment history and U_i at the same time
- Adjust for a small number of past treatments → often arbitrary

Past Outcomes Directly Affect Current Treatment

- Correlation between error term and future treatments
- Violation of strict exogeneity
- No adjustment is sufficient
- Together with the previous assumption
 - → no feedback effect over time

Instrumental Variables Approach

AR(1) model with fixed effects:

$$Y_{it} = \alpha_i + \rho Y_{i,t-1} + \beta X_{it} + \epsilon_{it}$$
 where $|\rho| < 1$

- Instruments: X_{i1} , X_{i2} , and Y_{i1}
- Generalized Method of Moments (GMM): Arellano and Bond (1991)
- Exclusion restrictions
- Arbitrary choice of instruments
- Substantive justification rarely given