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Motivation

How should we conduct causal inference when repeated
measurements are available?
Two types of variations:

1 cross-sectional variation within each time period
2 temporal variation within each unit

Before-and-after and cross-sectional designs
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Can we exploit both variations?
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Minimum Wage and Unemployment
(Card and Krueger. 1994. Am. Econ. Rev)

How does the increase in minimum wage affect employment?
Many economists believe the effect is negative

especially for the poor
also for the whole economy

Hard to randomize the minimum wage increase

In 1992, NJ minimum wage increased from $4.25 to $5.05
Neighboring PA stays at $4.25
Observe employment in both states before and after increase

NJ and (eastern) PA are similar
Fast food chains in NJ and PA are similar: price, wages, products,
etc.
They are most likely to be affected by this increase
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Difference-in-Differences Design

Parallel trend assumption
Visualizing Difference-in-Differences
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Setup:
Two time periods: time 0 (pre-treatment), time 1 (post-treatment)
Gi : treatment (Gi = 1) or control (Gi = 0) group
Zit = tGi : treatment assignment indicator for t = 0,1
Potential outcomes: Yi0(0), Yi0(1), Yi1(0), Yi1(1)
Observed outcomes: Yit = Yit(Zit)

Average treatment effect for the treated:

τ = E{Yi1(1)− Yi1(0) | Gi = 1}

Parallel trend assumption:

E{Yi1(0)− Yi0(0) | Gi = 1} = E{Yi1(0)− Yi0(0) | Gi = 0}

DiD estimator:

τ̂DiD = { ̂E(Yi1 | Gi = 1)− ̂E(Yi0 | Gi = 1)︸ ︷︷ ︸
difference for treated

}

−{ ̂E(Yi1 | Gi = 0)− ̂E(Yi0 | Gi = 0)︸ ︷︷ ︸
difference for control

}

Applicable to repeated cross-section data as well
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Linear Model for the Difference-in-Differences

Two-way fixed effects model:

Yit(z) = αi + βt + τz + εit
E{Yi0(0)} = αi
E{Yi1(0)} = αi + β
E{Yi1(1)} = αi + β + τ
E{Yi1(1)− Yi1(0)} = τ

Parallel trend assumption:
E{Yi1(0)− Yi0(0) | Gi = g} = β
Or equivalently E(εi1 − εi0 | Gi = g) = 0
Both Zit and εit can depend on αi or unobserved confounders

Least squares estimator equals the nonparametric DiD estimator,
i.e., τ̂FE = τ̂DiD

This equivalence does not hold in general beyond the 2× 2 case
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Comparison with the Lagged Outcome Model

Lagged outcome model:

Yi1(z) = α+ ρYi0 + τz + εi(z)

Nonparametric identification assumption:

{Yi1(1),Yi1(0)} ⊥⊥ Zit | Yi0

can be made conditional on Xi as well as Yi0
neither stronger nor weaker than the parallel trend assumption
same as parallel trend if E(Yi0 | Gi = 1) = E(Yi0 | Gi = 0)

Where does the imbalance in lagged outcome come from?
Difference-in-Differences unobserved time-invariant confounder
Lagged outcome directly affects treatment assignment
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Difference-in-Differences and Lagged Outcome
Estimators

Least squares estimator:

τ̂LD = ̂E(Yi1 | Gi = 1)− ̂E(Yi1 | Gi = 0)︸ ︷︷ ︸
difference for time 1

− ρ̂{ ̂E(Yi0 | Gi = 1)− ̂E(Yi0 | Gi = 0)︸ ︷︷ ︸
difference for time 0

}

If ρ̂ = 1, then τ̂LD = τ̂DiD

Assume 0 ≤ ρ < 1 (stationarity)
Without loss of generality, assume
E(Yi0 | Gi = 1) ≥ E(Yi0 | Gi = 0) (monotonicity)

1 If parallel trend holds, E(τ̂LD) ≥ E(τ̂DiD) = τ
2 If ignorability holds, τ = E(τ̂LD) ≥ E(τ̂DiD)

Bracketing relationship: E(τ̂LD) ≥ τ ≥ E(τ̂DiD)

Similar result holds nonparametrically (Ding and Li. 2019. Political Anal.)
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Adjusting for Baseline Covariates

Parallel trend assumption conditional on the baseline covaraites:

E{Yi1(0)− Yi0(0) | Xi = x,Gi = 1}
= E{Yi1(0)− Yi0(0) | Xi = x,Gi = 0} for all x

Matching: parallel trend within a pair or a strata

Weighting (Abadie. 2005. Rev. Econ. Stud ):

E{Yi1(1)− Yi1(0) | Gi = 1}

= E
[

Yi1 − Yi0

Pr(Gi = 1)
· Gi − Pr(Gi = 1 | Xi)

1− Pr(Gi = 1 | Xi)

]
where Pr(Gi = 1 | Xi) is the propensity score

Unconditional parallel trend assumption neither implies nor is
implied by conditional parallel trend assumption
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Fixed Effects Regression in Causal Inference

Regression models with fixed effects are the primary workhorse
for causal inference with panel data

Researchers use them to adjust for unobserved time-invariant
confounders (omitted variables, endogeneity, selection bias, ...)

“Good instruments are hard to find ..., so we’d like to have other
tools to deal with unobserved confounders. This chapter considers
... strategies that use data with a time or cohort dimension to
control for unobserved but fixed omitted variables”
(Angrist & Pischke. 2009. Mostly Harmless Econometrics)

“fixed effects regression can scarcely be faulted for being the
bearer of bad tidings” (Green et al. 2001. Int. Organ.)

What are the causal assumptions of regressions with fixed
effects?
How are these models related to other causal inference methods?
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Unit Fixed Effects Regression (Imai and Kim. 2019. Am. J. Political Sci)

One-way fixed effects linear regression: Yit = αi + βXit + εit
Strict exogeneity: E(εit | Xi , αi) = 0
Nonparametric structural equation model:

Yit = g1(Xit ,Ui , εit)

Xit = g2(Xi1, . . . ,Xi,t−1,Ui , ηit)

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

1 past treatments do not
affect the current
outcome

2 past outcomes do not
affect the current
outcome

3 past outcomes do not
affect the current
treatment
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Past Outcomes Directly Affect Current Outcome

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Identification is still possible

Past outcomes do not
confound Xit −→ Yit given Ui

No need to adjust for past
outcomes
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Past Treatments Directly Affect Current Outcome

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Past treatments as
confounders to be adjusted
Strict exogeneity holds given
past treatments and Ui

Impossible to adjust for an
entire treatment history and
Ui at the same time
Adjust for a small number of
past treatments often
arbitrary
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Past Outcomes Directly Affect Current Treatment

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Correlation between error
term and future treatments

Violation of strict exogeneity

No adjustment is sufficient

Together with the previous
assumption
 no feedback effect over
time
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Instrumental Variables Approach

AR(1) model with fixed effects:

Yit = αi + ρYi,t−1 + βXit + εit where |ρ| < 1

Yi1 Yi2 Yi3

Xi1 Xi2 Xi3

Ui

Instruments: Xi1, Xi2, and Yi1

Generalized Method of
Moments (GMM): Arellano
and Bond (1991)
Exclusion restrictions

Arbitrary choice of
instruments

Substantive justification rarely
given
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