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Motivation

@ How should we conduct causal inference when repeated

measurements are available?
@ Two types of variations:

@ cross-sectional variation within each time period

@ temporal variation within each unit
@ Before-and-after and cross-sectional designs
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@ Can we exploit both variations?
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Minimum Wage and Unemployment

(Card and Krueger. 1994. Am. Econ. Rev)

@ How does the increase in minimum wage affect employment?
@ Many economists believe the effect is negative

o especially for the poor
e also for the whole economy

Hard to randomize the minimum wage increase

In 1992, NJ minimum wage increased from $4.25 to $5.05

o Neighboring PA stays at $4.25
o Observe employment in both states before and after increase

NJ and (eastern) PA are similar

Fast food chains in NJ and PA are similar: price, wages, products,
etc.

They are most likely to be affected by this increase
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Difference-in-Differences Design

@ Parallel trend assumption
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@ Setup:
o Two time periods: time 0 (pre-treatment), time 1 (post-treatment)
e Gj: treatment (G; = 1) or control (G; = 0) group
e Zy = tG;: treatment assignment indicator for t = 0, 1
e Potential outcomes: Yio(0), Yio(1), Yi1(0), Yi1(1)
o Observed outcomes: Yi; = Yi(Zi)
@ Average treatment effect for the treated:
r = E{Ya(1)~ Yi(0)| Gi =1}
@ Parallel trend assumption:
E{Yi1(0) — Yjo(0) | Gi =1} = E{Yj1(0) — Yjo(0) | G; = 0}
@ DiD estimator:
oo = {E(Yi |Gi=1)-E(Yio | Gi=1)}
difference for treated
—{E(Yi1 | Gi=0) —E(Yjp | G; = 0)}
difference for control

@ Applicable to repeated cross-section data as well
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Linear Model for the Difference-in-Differences

@ Two-way fixed effects model:

Yi(2) = i+ Bt+72+ €t

(] E{Y,o(O)} = «j

o E{Yi1(0)} = ai +p

o E{Yy(1)} = a+8+T7
o E{Yu(1)-Yin(0)} = 7

@ Parallel trend assumption:

o E{Yi(0) - Yio(0)|Gi=g} = 8
e Orequivalently E(e;y —€io | Gi=9) =0
e Both Z; and ¢; can depend on «; or unobserved confounders

@ Least squares estimator equals the nonparametric DiD estimator,
i.e., 7re = TDiD

@ This equivalence does not hold in general beyond the 2 x 2 case
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Comparison with the Lagged Outcome Model

@ Lagged outcome model:
Yin(2) = a+pYio+712+€i(2)
@ Nonparametric identification assumption:
{Yin(1), Yin(0)} 1L Zi | Yio
@ can be made conditional on X; as well as Yy

@ neither stronger nor weaker than the parallel trend assumption
o same as parallel trend if E(Yio | Gi=1) =E(Yio | Gi=0)

@ Where does the imbalance in lagged outcome come from?

e Difference-in-Differences ~ unobserved time-invariant confounder
e Lagged outcome directly affects treatment assignment
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Difference-in-Differences and Lagged Outcome
Estimators

@ Least squares estimator:
flo = E(Yi | Gi=1) —E(Y;1 | Gi=0)
difference for time 1
—{E(Yio | Gi=1) —E(Yjo | Gi=0)}

difference for time 0

o |fﬁ =1, then 7LD = 7DD
@ Assume 0 < p < 1 (stationarity)
@ Without loss of generality, assume
E(Yio | Gi=1) > E(Yjo | Gi = 0) (monotonicity)

@ |f parallel trend holds, E(7p) > E(7pip) = 7

@ If ignorability holds, 7 = E(#.p) > E(%pip)
@ Bracketing relationship: E(7.p) > 7 > E(7pip)
@ Similar result holds nonparametrically (Ding and Li. 2019. Political Anal.)
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Adjusting for Baseline Covariates

@ Parallel trend assumption conditional on the baseline covaraites:

E{Y,1(0) — Y,()(O) | X,’ =X, G,’ = 1}
= E{YH(O) — Y,o(O) ’ X,‘ =X, G,' = 0} for all x

@ Matching: parallel trend within a pair or a strata

@ Weighting (Abadie. 2005. Rev. Econ. Stud):

E{Yi1(1)— Yn(0) | Gi =1}
Yii— Yo G —Pr(Gi=1]|X)
Pr(Gi=1) 1-Pr(Gi=1]X))

where Pr(G; = 1 | X;) is the propensity score

@ Unconditional parallel trend assumption neither implies nor is
implied by conditional parallel trend assumption
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Fixed Effects Regression in Causal Inference

@ Regression models with fixed effects are the primary workhorse
for causal inference with panel data

@ Researchers use them to adjust for unobserved time-invariant
confounders (omitted variables, endogeneity, selection bias, ...)

@ “Good instruments are hard to find ..., so we’d like to have other
tools to deal with unobserved confounders. This chapter considers
... strategies that use data with a time or cohort dimension to
control for unobserved but fixed omitted variables”

(Angrist & Pischke. 2009. Mostly Harmless Econometrics)

o “fixed effects regression can scarcely be faulted for being the
bearer of bad tidings” (Green et al. 2001. Int. Organ.)

@ What are the causal assumptions of regressions with fixed
effects?
@ How are these models related to other causal inference methods?

10/15



Unit Fixed Effects Regression (maiand kim. 2019. Am. J. Poitical Sci

@ One-way fixed effects linear regression: Yi; = aj + 8Xi + €jt
@ Strict exogeneity: E(ej | Xj, i) =0
@ Nonparametric structural equation model:

\/l'i - g1 ()(/h Uf7 eff)
Xi = 9(Xi,..., Xit—1,Ui,mit)

@ @ @ @ past treatments do not
affect the current

outcome
@ past outcomes do not
@ @ affect the current
n outcome
\ / © past outcomes do not
vet L affect the current

U treatment
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Past Outcomes Directly Affect Current Outcome

@ Past outcomes do not

@ @ confound X; —» Y; given U;
. @ No need to adjust for past
\ / outcomes

@ Identification is still possible
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Past Treatments Directly Affect Current Outcome

@ Past treatments as
confounders to be adjusted

@ Strict exogeneity holds given
past treatments and U;

@ Impossible to adjust for an
entire treatment history and
U, at the same time

@ Adjust for a small number of
past treatments ~~ often
arbitrary
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Past Outcomes Directly Affect Current Treatment

@ Correlation between error
term and future treatments

@ Violation of strict exogeneity

@ @‘ @ No adjustment is sufficient
T @ Together with the previous
assumption

A ~+ no feedback effect over
v time

~ -
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Instrumental Variables Approach

@ AR(1) model with fixed effects:

Yi = aj+pYjt_1+ Xy +er where |[p| <1

©.

@ Instruments: Xj1, Xi», and Yj4

@ Generalized Method of
Moments (GMM): Arellano
and Bond (1991)

@ Exclusion restrictions

@ Arbitrary choice of
instruments

@ Substantive justification rarely
given
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