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With the foundations we have built so far, we will study sequences.

1 Limits of Sequences

Definition 1 (Sequence) Let X be a set. A sequence in X is a function from N to X.

In words, a sequence is a function that takes an input from N and produces an output in X. There
must be some pattern that can be described in a certain way.

Example 1 Two examples of a sequence:

1.
{

1
n

}∞
n=1

=
{

1, 12 ,
1
3 , . . .

}
.

2. {(−1)n}∞n=1 = {−1, 1,−1, 1, . . .}.

The focus of our study is the behavior of these infinite sequences. We say a sequence is convergent
if it eventually becomes arbitrarily close to some number after a certain point. We now formally
define the concept of convergence.

Definition 2 (Limit of Sequence) A sequence {an}∞n=1 converges to the limit x if for all ε > 0
there exists N ∈ N such that |an − x| < ε for all n ≥ N . Then, we write limn→∞ an = x or more
economically lim an = x. A sequence that does not converge is said to be divergent.

It might be helpful to think of |xn − x| < ε as a set of points around x. We call such a set as
“neighborhood of x.” Note that ε represents a quantity that can be made arbitrarily small.

Definition 3 (Neighborhood) A set Q is a neighborhood of a point x if there exists ε > 0 such
that the open interval (x− ε, x+ ε) is a subset of Q.

Given this definition of convergence, let’s look at some examples.

Example 2 Find the limit of the following sequences.

1.
{

1√
n

}∞
n=1

2.
{
n+1
n

}∞
n=1

3. {
√
n+ 1−

√
n}∞n=1

1



Now, we prove some important theorems about convergent sequences. The first such theorem is
about the uniqueness of limit. This makes intuitive sense because a sequence cannot be arbitrarily
close to two different numbers. We prove this intuition.

Theorem 1 (Uniqueness of Limit) If a sequence is convergent, its limit is unique.

So far, we have studied the convergence of sequences in general. Now we pay attention to a special
kind of sequence, and examine its convergence property.

Definition 4 Let {an}∞n=1 be a sequence.

1. {an}∞n=1 is bounded from above if there exists m such that an ≤ m for all n.

2. {an}∞n=1 is bounded from below if there exists m such that an ≥ m for all n.

3. {an}∞n=1 is bounded if there exists m such that |an| ≤ m for all n.

Having known the definition of bounded sets, this definition should not be too difficult to under-
stood. The next important theorem states that all convergent sequences are bounded. That is, we
can find a closed interval [−m,m] that contains every term in the sequence.

Theorem 2 (Bounded Sequence) Every convergent sequence is bounded.

However, the converse is not true; i.e., bounded sequences are not necessarily convergent. Finally,
we look at the useful properties of sequences. It turns out that sequences behave extremely well
with respect to the operations of addition, multiplication, and division.

Theorem 3 (Algebraic Operations of Limit) Let lim an = x, and lim bn = y.

1. lim can = cx for all c ∈ R.

2. lim(an + bn) = x+ y.

3. lim(anbn) = xy.

4. lim
(
an
bn

)
= x

y if bn 6= 0 for all n ∈ N and b 6= 0.

Sequences also work well with the order.

Theorem 4 (Order of Limit) Let lim an = x, and lim bn = y.

1. If an ≥ 0 for all n ∈ N, then x ≥ 0.

2. If an ≤ bn for all n ∈ N, then x ≤ y.

3. If c ≤ an for some c ∈ R, then c ≤ x.

4. If an ≤ c for some c ∈ R, then x ≤ c.
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2 Cauchy Sequences

The following concept is very similar to the convergence of sequences given above,

Definition 5 A sequence {an}∞n=1 is a Cauchy sequence if for any ε > 0 there exists N ∈ N such
that |an − am| < ε for any m,n ≥ N .

Let’s compare this definition with that of convergent sequences. The definition of a convergent
sequence says that given an arbitrarily small positive number ε, it is possible to find a point in the
sequence after which all the terms of sequences are close to the limit a within the range of ε. In
contrast, the definition of a Cauchy sequence says that it is possible to find a point in the sequence
after which all the terms are closer to each other within the range of ε. Intuitively, those two things
are related to each other. In fact, we will eventually prove that they are equivalent.

Theorem 5 (Cauchy Sequences) Two important theorems:

1. Every convergent sequence is a Cauchy sequence.

2. Every Cauchy sequence is bounded.

Once you get far enough in a Cauchy sequence, you might suspect that its terms will start piling
up around a certain point because they get closer and closer to each other. We call such a point
an accumulation point (or limit point). We first consider an accumulation point of a set,

Definition 6 x is an accumulation point of a set Q if every neighborhood of x contains infinitely
many points of Q that are different from x.

Then, we can similarly define an accumulation point of a sequence by considering its range as an
infinite set. That is, x is a limit point of {an}∞n=1 if for every ε > 0 there are infinite number of
terms an such that |an − x| < ε. The following theorem makes this connection more explicit.

Theorem 6 (Accumulation Point) x is an accumulation point of a set X if and only if there
exists a sequence {an}∞n=1 such that limn→∞ an = x and an ∈ X and an 6= x for all n ∈ N.

Examples are always helpful to understand the key points about a new concept.

Example 3 Three examples:

1. No finite set has an accumulation point.

2. The sequence {1, 1, 1, . . .} has 1 as the limit, but it has no accumulation point.

3. Every real number is an accumulation point of the set of rational numbers.

The first example illustrates that every neighborhood of an accumulation point has to contain
infinitely many points that belong to the set. The second example shows that the limit is not
necessarily an accumulation point. The third example shows that an accumulation point itself may
not belong to the set. The following theorem gives us the condition under which an accumulation
point exists.

Theorem 7 (Bolzano-Weierstrass) Every bounded infinite set has at least one accumulation
point.

Theorem 8 (Equivalence of Cauchy and Convergent Sequences) Every Cauchy sequence
is convergent.

That is, a sequence is convergent if and only if it is a Cauchy sequence.
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3 Subsequences and Monotone Sequences

As the final topic on sequences, we study two special kinds of sequences. The first is a monotone
sequence.

Definition 7 A sequence is monotone if it is either increasing or decreasing.

1. {an}∞n=1 is increasing (decreasing) if an+1 ≥ an (an+1 ≤ an) for all n.

2. {an}∞n=1 is strictly increasing (strictly decreasing) if an+1 > an (an+1 < an) for all n.

Without much hard thinking, we can come up with a monotone sequence that is not convergent.
Earlier, we also saw that although convergent sequences are bounded, the converse is not necessarily
true. Here, we prove that if a bounded sequence is monotone, then it is convergent. Moreover, a
monotone sequence converges only when it is bounded.

Theorem 9 (Monotone Convergence) A monotone sequence is convergent if and only if it is
bounded.

Example 4 Consider a sequence defined recursively, a1 =
√

2 and an =
√

2 +
√
an−1 for n =

2, 3, . . .. Is this sequence convergent? If so, what is the limit?

Next, we consider a subsequence of a sequence. Loosely speaking, a subsequence is a remaining
sequence after deleting some terms of the original sequence.

Definition 8 Let {an}∞n=1 be a sequence and {nk}∞k=1 be a strictly increasing sequence of positive
integers. Then, {ank

}∞k=1 is called a subsequence of {an}∞n=1.

Note that the original sequence itself is a subsequence.

Example 5 Consider a sequence
{

1
n

}∞
n=1

. Find {nk}∞k=1 for the following subsequences:

1.
{
1
k

}∞
k=1

2.
{

1
2k

}∞
k=1

3.
{

1
k2

}∞
k=1

All of the three subsequences in the above example converge to the same limit, namely 0, as the
original sequence. This property holds in general.

Theorem 10 (Convergence of Subsequences) A sequence converges if and only if all of its
subsequences converge, and they all converge to the same limit.

Finally, we prove the theorem which places Theorem 7 in the context of sequences.

Theorem 11 (Modified Bolzano-Weierstrass) Every bounded sequence contains a convergent
subsequence.

We leave the proof of this theorem as an exercise, which is very similar to the proof of Theorem 7
and applies the “divide-and-conquer” strategy to the interval [−m,m] where m ≥ |an| for all n.
This concludes the chapter on sequences.
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4 Limit Superior, Limit Inferior, and Sequences of Sets

We have studied convergent sequences, but we do not know much about divergent sequences. We
can study the latter by introducing another concept of limits of sequences.

Definition 9 (Limit Superior and Inferior) Let {an}∞n=1 be a sequence. We define the limit
superior and limit inferior of the sequence as follows,

lim sup
n→∞

an = inf
n≥1

sup
m≥n

am, lim inf
n→∞

an = sup
n≥1

inf
m≥n

am.

To understand this definition, consider a sequence bn = sup{am : m ≥ n}. Then, limn→∞ bn =
infn≥1 supm≥n am because bn is a monotonically decreasing sequence. Therefore, we can think of
lim sup and lim inf as limiting bounds of a sequence. This also means that lim sup and lim inf always
exists if we allow for the possibility of∞ and −∞. For example, if sup{am : m ≥ n} is not bounded,
lim supn→∞ an = −∞, whereas if inf{am : m ≥ n} is not bounded, then lim infn→∞ an =∞. The
following examples should give you a good understanding of these concepts,

Example 6 Find the infinimum, suprimum, limit, limit inferior, and limit superior of the follow-
ing sequences if they exist.

1. {an}∞n=1 where an = 1/n.

2. {an}∞n=1 where an = (−1)n.

3. {an}∞n=1 where an = n(−1)n.

As we might expect, the limit superior is greater than or equal to the limit inferior, and they equal
to each other if and only if the sequence is convergent.

Theorem 12 (Properties of Limit Superior and Inferior) Let {an}∞n=1 be a sequence. Then,

1. lim infn→∞ an ≤ lim supn→∞ an.

2. lim an = x if and only if lim infn→∞ an = lim supn→∞ an = x.

These concepts and properties extend directly to a sequence of sets, {An}∞n=1 where each An is
a set rather than a real number, and its limit.

Definition 10 (Limit Superior and Inferior of a Sequence of Sets) Let {An}∞n=1 be a se-
quence of sets. Then, the limit superior and inferior of the sequence can be defined as,

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
m=n

Am, lim inf
n→∞

An =

∞⋃
n=1

∞⋂
m=n

Am.

These definitions are completely parallel with Definition 9 if we consider the supremum (infinimum)
of a sequence of sets as the union (intersection) of sets, i.e., the smallest set containing all sets
(the largest set contained in all sets). The same properties of limit superior and inferior hold for a
sequence of sets.

Theorem 13 (Properties of Limit Superior and Inferior for Sequence of Sets) Let {An}∞n=1

be a sequence of sets. Then,

1. lim infn→∞An ⊂ lim supn→∞An.

2. We say {An}∞n=1 has a limit X and write limAn = X if and only if lim infn→∞An =
lim supn→∞An = X.
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