Heterogeneous Treatment Effects

Kosuke Imai

Harvard University

Spring 2021

Heterogeneous Treatment Effects

- Same treatment may affect different individuals differently
- Conditional Average Treatment Effect (CATE)

$$\tau(\mathbf{x}) = \mathbb{E}(Y_i(1) - Y_i(0) \mid \mathbf{X}_i = \mathbf{x})$$
 where $\mathbf{x} \in \mathcal{X}$

- who benefits from and is harmed by the treatment?
- Individualized treatment rule (ITR)

$$f: \mathcal{X} \longrightarrow \{0, 1\}$$

We can never identify an individual causal effect

$$\tau_i = Y_i(1) - Y_i(0)$$

- ITR depends on the choice of X_i
- Use of machine learning methods

Subgroup Analysis and Pre-registration

- If we have a hypothesis about the some group-specific effects:
 - stratify the data and estimate the ATE within each strata
 - compare the ATE between groups
- Problem: multiple testing, data snooping, "p-hacking", "fishing"
- Solution: Pre-register hypotheses and analyses
 - standard in medicine, has become a norm in social sciences
 - repositories
 - Evidence in Governance and Politics (EGAP)
 - American Economic Association (AEA)
 - Registry for International Development Impact Evaluations (RIDIE)
- Pre-registration solves commitment and transparency problems
- It does not solve the statistical problem of multiple testing
 - FWER (family-wise error rate): probability of making any type I error
 - FDR (false discovery rate): expected proportion of type I error among all rejections

Machine Learning for Heterogeneous Causal Effects

- Motivation:

 - avoid false discoveries \infty avoid over-fitting via regularization
- Difference between prediction and causality
 - prediction → use X_i to predict Y_i
 - causality \rightsquigarrow use \mathbf{X}_i to predict $\tau_i = Y_i(1) Y_i(0)$
- Mean squared error decomposition:

$$\mathbb{E}[(\tau_i - \hat{\tau}(\mathbf{x}))^2 \mid \mathbf{X}_i = \mathbf{x}]$$

$$= \mathbb{E}[(\tau_i - \tau(\mathbf{x}))^2 \mid \mathbf{X}_i = \mathbf{x}] + \mathbb{E}[(\tau(\mathbf{x}) - \hat{\tau}(\mathbf{x}))^2 \mid \mathbf{X}_i = \mathbf{x}]$$

- Inference of heterogenous treatment effects depends on
 - How predictive X_i is of τ_i
 - 2 How good your model is for estimating $\tau(\mathbf{x})$

Estimation of the CATE (Künzel et al. 2018. PNAS)

- S-learner
 - estimate $\mu_t(\mathbf{x}) = \mathbb{E}(Y_i \mid T_i = t, \mathbf{X}_i = \mathbf{x})$ using a single model
 - 2 compute $\hat{\tau}(\mathbf{x}) = \hat{\mu}_1(\mathbf{x}) \hat{\mu}_0(\mathbf{x})$
 - \rightarrow modeling interactions between T_i and X_i can be challenging
- T-learner
 - estimate $\mu_t(\mathbf{x}) = \mathbb{E}(Y_i \mid T_i = t, \mathbf{X}_i)$ separately for each t
 - 2 compute $\hat{\tau}(\mathbf{x}) = \hat{\mu}_1(\mathbf{x}) \hat{\mu}_0(\mathbf{x})$
 - \leadsto difficult if the treatment assignment is lopsided, $\hat{\tau}$ may not be smooth
- X-learner
 - estimate $\mu_t(\mathbf{x}) = \mathbb{E}(Y_i \mid T_i = t, \mathbf{X}_i)$ separately for each t
 - 2 impute missing potential outcomes as $\hat{\mu}_{1-T_i}(\mathbf{X}_i)$ and compute $\hat{\tau}_i$
 - $oldsymbol{0}$ model estimated individual treatment effects $\hat{ au}_i$ using \mathbf{X}_i
 - → more robust but less efficient

Penalized Maximum Likelihood Estimator

PMLE:

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax} \, \log \mathcal{L}(\boldsymbol{\theta}; \mathbf{Y}, \mathbf{X}) + P(\lambda, \boldsymbol{\theta})$$

- Ridge: $P(\lambda, \theta) = \lambda \sum_{j=1}^{\theta_p} \beta_j^2$
- Lasso: $P(\lambda, \theta) = \lambda \sum_{j=1}^{p} |\beta_j|$
- Sample splitting:
 - training data: estimate θ given λ
 - 2 test data: choose $\hat{\lambda}$
 - **3** validation data: estimate CATE given $\hat{\lambda}$
- S-learner (Imai and Ratkovic. 2013. Ann. Appl. Stat.)
 - Lasso with support vector machine
 - separate tuning parameters λ for main terms and interactions → two-dimensional grid search
- T-learner (Qian and Murphy. 2011. Ann. Stat.)
 - Lasso with least squares
 - separately fitted for the treatment and control groups
 - uses S-learner when the treatment has more than 2 categories

Job Training Program (Imai and Ratkovic. 2013. Ann. Appl. Stat.)

- 44 covariates including some square and interaction terms
- 44 interactions between the treatment and covariates
- sparcity of the model helps with interpretation

Groups most helped or hurt by the treatment	Average effect	Age	Educ.	Race	Married	Highschool degree	Earnings (1975)	Unemp (1975)
Positive effects								
Low education, Non-Hispanic	53	31	4	White	No	No	10,700	No
High Earning	50	31	4	Black	No	No	4020	No
	40	28	15	Black	No	Yes	0	Yes
Unemployed, Black,	38	30	14	Black	Yes	Yes	0	Yes
Some College	37	22	16	Black	No	Yes	0	Yes
	45	33	5	Hisp	No	No	0	Yes
	39	50	10	Hisp	No	No	0	Yes
Unemployed, Hispanic	37	33	9	Hisp	Yes	No	0	Yes
	37	28	11	Hisp	Yes	No	0	Yes
	37	32	12	Hisp	Yes	Yes	0	Yes
Negative effects								
Older Blacks,	-17	43	10	Black	No	No	4130	No
No HS Degree	-20	50	8	Black	Yes	No	5630	No
	-17	29	12	White	No	Yes	12,200	No
Unmarried Whites,	-17	31	13	White	No	Yes	5500	No
HS Degree	-19	31	12	White	No	Yes	495	No
	-19	31	12	White	No	Yes	2610	No
	-20	36	12	Hisp	No	Yes	11,500	No
High earning Hispanic	-21	34	11	Hisp	No	No	4640	No
	-21	27	12	Hisp	No	Yes	24,300	No
	-21	36	11	Hisp	No	No	3060	No

Classification and Regression Trees (CART)

- CART is flexible and interpretable
- T-learner (Imai and Strauss. 2011. Political Anal.)
 - GOTV experiment with text messaging
 - separately fitted to the treatment (right) and control (left) groups

- S-learner (Athey and Imbens. 2016. PNAS)
 - target the MSE of CATE rather than the MSE of prediction
 - 3-way sample splitting: growing a tree, pruning, estimating CATE
- Random forest (Wager and Athey. 2018. J. Amer. Stat. Asoc.)

R-Learner (Nie and Wager. 2021. Biometrika)

- Assumption: $\{Y_i(0), Y_i(1)\} \perp \!\!\! \perp T_i \mid \mathbf{X}_i = \mathbf{x} \text{ and } 0 < \pi(\mathbf{x}) < 1 \text{ for all } \mathbf{x}$
- A motivating model for potential outcomes:

$$Y_i(t) = \underbrace{\mathbb{E}(Y_i(0) \mid \mathbf{X}_i)}_{\mu_0(\mathbf{X}_i)} + t \times \underbrace{\tau(\mathbf{X}_i)}_{\mu_1(\mathbf{X}_i) - \mu_0(\mathbf{X}_i)} + \epsilon_i(t) \quad \text{for } t = 0, 1$$

Partial linear regression for (residualized) observed data:

$$Y_i - \underbrace{\mathbb{E}(Y_i \mid \mathbf{X}_i)}_{\mu(\mathbf{X}_i)} = \{T_i - \pi(\mathbf{X}_i)\} \tau(\mathbf{X}_i) + \epsilon_i$$

where
$$\mu(\mathbf{X}_i) = \mu_0(\mathbf{X}_i) + \pi(\mathbf{X}_i)\tau(\mathbf{X}_i)$$
 and $\epsilon_i = \epsilon_i(T_i)$

- Estimation procedure based on cross-validation
 - Train models for $\pi(\mathbf{x})$ and $\mu(\mathbf{x})$
 - Obtain the CATE estimate via

$$\hat{\tau} = \underset{\tau}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \left[\left\{ Y_{i} - \hat{\mu}(\mathbf{X}_{i}) \right\} - \left\{ T_{i} - \hat{\pi}(\mathbf{X}_{i}) \right\} \tau(\mathbf{X}_{i}) \right]^{2} + \underbrace{\Lambda_{n}(\tau)}_{\text{regularization}}$$

Individualized Treatment Rule (ITR)

- Two-step procedure:
 - estimate the CATE $\hat{\tau}(\mathbf{x})$
 - 2 construct an ITR as $f(\mathbf{x}) = \mathbf{1}\{\hat{\tau}(\mathbf{x}) > 0\}$
- One-step procedure: outcome weighted learning (Zhao et al. 2012. J. Am. Stat. Assoc.) → optimal classification
 - randomized experiment

$$\underset{f}{\operatorname{argmax}} \mathbb{E}\{Y_i(f(\mathbf{X}_i))\} = \underset{f}{\operatorname{argmin}} \mathbb{E}\{Y_i(1 - f(\mathbf{X}_i))\}$$

$$= \underset{f}{\operatorname{argmin}} \underbrace{\mathbb{E}[\mathbf{1}\{f(\mathbf{X}_i) = 0\}Y_i \mid T_i = 1]}_{\text{treated units who are assigned to control}$$

$$+ \underbrace{\mathbb{E}[\mathbf{1}\{f(\mathbf{X}_i) = 1\}Y_i \mid T_i = 0]}_{\text{control units who are assigned to treatment}}$$

classification problem → weighted support vector machine:

$$\underset{\tau}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\frac{Y_{i}}{A_{i}\pi + (1 - A_{i})/2}}_{\text{weights}} \mathbf{1} \{A_{i} \neq \operatorname{sign}(\tau(\mathbf{X}_{i}))\}$$

where
$$A_i = 2T_i - 1 \in \{-1, 1\}$$
 and $\pi = Pr(T_i = 1)$