
Heterogeneous Treatment Effects

Kosuke Imai

Harvard University

Spring 2021

1 / 10



Heterogeneous Treatment Effects

Same treatment may affect different individuals differently
Conditional Average Treatment Effect (CATE)

τ(x) = E(Yi(1)− Yi(0) | Xi = x) where x ∈ X

who benefits from and is harmed by the treatment?

Individualized treatment rule (ITR)

f : X −→ {0,1}

We can never identify an individual causal effect

τi = Yi (1)− Yi (0)

ITR depends on the choice of Xi

Use of machine learning methods
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Subgroup Analysis and Pre-registration

If we have a hypothesis about the some group-specific effects:
stratify the data and estimate the ATE within each strata
compare the ATE between groups

Problem: multiple testing, data snooping, “p-hacking”, “fishing”
Solution: Pre-register hypotheses and analyses

standard in medicine, has become a norm in social sciences
repositories

Evidence in Governance and Politics (EGAP)
American Economic Association (AEA)
Registry for International Development Impact Evaluations (RIDIE)

Pre-registration solves commitment and transparency problems

It does not solve the statistical problem of multiple testing
FWER (family-wise error rate): probability of making any type I error
FDR (false discovery rate): expected proportion of type I error
among all rejections
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Machine Learning for Heterogeneous Causal Effects

Motivation:
1 avoid strong modeling assumptions data-driven approach
2 avoid false discoveries avoid over-fitting via regularization

Difference between prediction and causality
prediction use Xi to predict Yi
causality use Xi to predict τi = Yi (1)− Yi (0)

Mean squared error decomposition:

E[(τi − τ̂(x))2 | Xi = x]

= E[(τi − τ(x))2 | Xi = x] + E[(τ(x)− τ̂(x))2 | Xi = x]

Inference of heterogenous treatment effects depends on
1 How predictive Xi is of τi
2 How good your model is for estimating τ(x)
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Estimation of the CATE (Künzel et al. 2018. PNAS)

S-learner
1 estimate µt (x) = E(Yi | Ti = t ,Xi = x) using a single model
2 compute τ̂(x) = µ̂1(x)− µ̂0(x)

 modeling interactions between Ti and Xi can be challenging

T -learner
1 estimate µt (x) = E(Yi | Ti = t ,Xi ) separately for each t
2 compute τ̂(x) = µ̂1(x)− µ̂0(x)

 difficult if the treatment assignment is lopsided, τ̂ may not be
smooth

X -learner
1 estimate µt (x) = E(Yi | Ti = t ,Xi ) separately for each t
2 impute missing potential outcomes as µ̂1−Ti (Xi ) and compute τ̂i
3 model estimated individual treatment effects τ̂i using Xi

 more robust but less efficient
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Penalized Maximum Likelihood Estimator

PMLE:
θ̂ = argmax

θ
logL(θ; Y,X) + P(λ,θ)

Ridge: P(λ,θ) = λ
∑p

j=1 β
2
j

Lasso: P(λ,θ) = λ
∑p

j=1 |βj |
Sample splitting:

1 training data: estimate θ given λ
2 test data: choose λ̂
3 validation data: estimate CATE given λ̂

S-learner (Imai and Ratkovic. 2013. Ann. Appl. Stat.)

Lasso with support vector machine
separate tuning parameters λ for main terms and interactions 
two-dimensional grid search

T -learner (Qian and Murphy. 2011. Ann. Stat.)

Lasso with least squares
separately fitted for the treatment and control groups
uses S-learner when the treatment has more than 2 categories
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Job Training Program (Imai and Ratkovic. 2013. Ann. Appl. Stat.)

44 covariates including some square and interaction terms
44 interactions between the treatment and covariates
sparcity of the model helps with interpretation
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TABLE 2
Ten highest and lowest treatment effects of job training program based on the NSW Data

Groups most helped or hurt Average Highschool Earnings Unemp. PSID
by the treatment effect Age Educ. Race Married degree (1975) (1975) weights

Positive effects
Low education, Non-Hispanic 53 31 4 White No No 10,700 No 1.36

High Earning 50 31 4 Black No No 4020 No 0.97∗
40 28 15 Black No Yes 0 Yes 0.89∗

Unemployed, Black, 38 30 14 Black Yes Yes 0 Yes 1.28∗
Some College 37 22 16 Black No Yes 0 Yes 0.99∗

45 33 5 Hisp No No 0 Yes 0.89
39 50 10 Hisp No No 0 Yes 1.28∗

Unemployed, Hispanic 37 33 9 Hisp Yes No 0 Yes 1.13∗
37 28 11 Hisp Yes No 0 Yes 1.02∗
37 32 12 Hisp Yes Yes 0 Yes 1.80∗

Negative effects
Older Blacks, − 17 43 10 Black No No 4130 No 1.15

No HS Degree − 20 50 8 Black Yes No 5630 No 4.55

− 17 29 12 White No Yes 12,200 No 1.45∗
Unmarried Whites, − 17 31 13 White No Yes 5500 No 1.56

HS Degree − 19 31 12 White No Yes 495 No 1.12
− 19 31 12 White No Yes 2610 No 1.21

− 20 36 12 Hisp No Yes 11,500 No 1.10∗
High earning Hispanic − 21 34 11 Hisp No No 4640 No 0.89∗

− 21 27 12 Hisp No Yes 24,300 No 0.95∗
− 21 36 11 Hisp No No 3060 No 0.88∗

Note: Each row represents the estimated treatment effect given the characteristics of workers. The most effective treatment rule would target low-education,
high income Non-Hispanics; unemployed blacks with some college, and unemployed Hispanics. The treatment would be least effective when administered
to older, employed recipients; unmarried whites with a high school degree but no college; and high earning Hispanics with no college. The last column
represents the PSID weights, which are the inverse of the estimated probability of being in the NSW sample, standardized to have mean one. Weights
marked with an asterisk indicate the groups which are not identified as having highest or lowest treatment effects when generalizing the results to the
PSID sample (see Table 3 for those results).
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Classification and Regression Trees (CART)

CART is flexible and interpretable
T -learner (Imai and Strauss. 2011. Political Anal.)

GOTV experiment with text messaging
separately fitted to the treatment (right) and control (left) groups

|
age< 24.5

age.missing< 0.5

lg.dens>=6.043

lg.dens< 5.858
0.42

0.42 0.73

0.72

0.62

|
age< 19.5

lg.dens>=5.985

lg.dens< 5.852
0.38

0.42 0.79

0.66

S-learner (Athey and Imbens. 2016. PNAS)
target the MSE of CATE rather than the MSE of prediction
3-way sample splitting: growing a tree, pruning, estimating CATE

Random forest (Wager and Athey. 2018. J. Amer. Stat. Asoc.)
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R-Learner (Nie and Wager. 2021. Biometrika)

Assumption: {Yi(0),Yi(1)}⊥⊥Ti | Xi = x and 0 < π(x) < 1 for all x
A motivating model for potential outcomes:

Yi(t) = E(Yi(0) | Xi)︸ ︷︷ ︸
µ0(Xi )

+ t × τ(Xi)︸ ︷︷ ︸
µ1(Xi )−µ0(Xi )

+ εi(t) for t = 0,1

Partial linear regression for (residualized) observed data:

Yi − E(Yi | Xi)︸ ︷︷ ︸
µ(Xi )

= {Ti − π(Xi)}τ(Xi) + εi

where µ(Xi) = µ0(Xi) + π(Xi)τ(Xi) and εi = εi(Ti)
Estimation procedure based on cross-validation

1 Train models for π(x) and µ(x)
2 Obtain the CATE estimate via

τ̂ = argmin
τ

1
n

n∑
i=1

[{Yi − µ̂(Xi )} − {Ti − π̂(Xi )}τ(Xi )]2

+ Λn(τ)︸ ︷︷ ︸
regularization
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Individualized Treatment Rule (ITR)
Two-step procedure:

1 estimate the CATE τ̂(x)
2 construct an ITR as f (x) = 1{τ̂(x) > 0}

One-step procedure: outcome weighted learning (Zhao et al. 2012. J.
Am. Stat. Assoc.)  optimal classification

randomized experiment

argmax
f

E{Yi (f (Xi ))} = argmin
f

E{Yi (1− f (Xi ))}

= argmin
f

E[1{f (Xi ) = 0}Yi | Ti = 1]︸ ︷︷ ︸
treated units who are assigned to control

+ E[1{f (Xi ) = 1}Yi | Ti = 0]︸ ︷︷ ︸
control units who are assigned to treatment

classification problem weighted support vector machine:

argmin
τ

1
n

n∑
i=1

Yi

Aiπ + (1− Ai )/2︸ ︷︷ ︸
weights

1{Ai 6= sign(τ(Xi ))}

where Ai = 2Ti − 1 ∈ {−1,1} and π = Pr(Ti = 1)
10 / 10


	Introduction
	Subgroup Analysis and Multiple Testing
	Heterogeneous Causal Effects
	Individualized Treatment Rules

