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Motivation

Causal inference inference for counterfactuals
Comparison between treated and control units
Consider the Average Treatment Effect for the Treated (ATT):

τATT = E(Yi(1)− Yi(0) | Ti = 1)

Regression model-based imputation:

τ̂reg =
1
n1

n∑
i=1

Ti (Yi − µ̂0(Xi))

Regression can be model-dependent
Matching nonparametric imputation:

τ̂match =
1
n1

n∑
i=1

Ti

Yi −
1
|Mi |

∑
i ′∈Mi

Yi ′


whereMi is the “matched set” for treated unit i
Weighting as a generalization of matching
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Matching as Nonparametric Preprocessing for
Reducing Model Dependence (Ho, et al. 2007. Political Anal.)

4.3 Model Dependence in Observational Data

We first illustrate the problem of sensitivity to model specification and then give a more
formal definition of model dependence. The left graph of Figure 1 plots artificial data for
outcome Yi on the vertical axis and a pretreatment covariate Xi on the horizontal axis (we
discuss the right graph in Section 5.2). This data set was designed to illustrate the problem;
in real examples, aspects of the problem we portray here often appear, but they may be
more difficult to see given the simultaneous presence of other methodological problems.
In addition, although a good data analyst could easily identify outliers in this one-
dimensional case, doing so is harder in the usual situation with many covariates. In this
figure, each data point is plotted as a ‘‘T’’ for treated units (Ti 5 1) and ‘‘C’’ for control
units (Ti 5 0). We then fit two regressions to these data. The first is a linear regression of
Yi on a constant, Ti, and Xi: E[Yi | Ti, Xi] 5 a þ Tib þ Xic. The fitted values for this
regression are portrayed in two parallel solid lines, the dark solid line for the treated group,
E[Yi | Ti 5 1, Xi]5 aþ bþ Xic, and the gray solid line for the controls, E[Yi | Ti5 0, Xi]5
a þ Xic. The positive vertical distance between the two straight lines is this parametric
model’s causal effect estimate.

Model dependence is easy to see by also fitting a quadratic model to the same data,
which merely involves adding an X2

i term to the original linear regression. Fitted values for
the quadratic regression appear as dashed curves in the same left graph, again gray for the
controls and solid black for the treated. Clearly, these fit the same data markedly differ-
ently from the original regression. Not only is the overall shape completely different, but

Fig. 1 Model sensitivity of ATE estimates for imbalanced raw and balanced matched data. This
figure presents an artificial data set of treated units represented by ‘‘T’’ and control units represented
by ‘‘C.’’ The vertical axis plots Yi and the horizontal axis plots Xi. The panels depict estimates of the
ATE for a linear and quadratic specification, represented by the difference between parallel lines and
parabolas, respectively. Dark lines are fitted to the treated points and gray to the controls. In the raw
data, plotted in the left panel, some of the control units are far outside the range of the treated units,
and these outlying control units are influential in the parametric models. In the matched data, plotted
in the right panel, treated units are matched with control units that are close in Xi (gray units are
discarded), and as a result treatment effect estimates are similar regardless of model specification.
The two linear and two quadratic lines also appear on the right graph (on top of one another),
truncated to the location of the matched data.

210 Daniel E. Ho et al.
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Bias in Observational Studies
Assumptions

1 Overlap: 0 < Pr(Ti = 1 | Xi = x) < 1 for any x
2 Ignorability: {Yi (1),Yi (0)}⊥⊥Ti | Xi = x for any x

Bias decomposition (Heckman et al. 1998. Econometrica ):
E(Yi (0) | Ti = 1)− E(Yi | Ti = 0)

=

∫
S1\S

E(Yi (0) | Ti = 1,Xi = x)dFXi |Ti=1(x)

−
∫

S0\S
E(Yi (0) | Ti = 0,Xi = x)dFXi |Ti=0(x)︸ ︷︷ ︸

bias due to lack of common support

+

∫
S
E(Yi (0) | Ti = 0,Xi = x)d{FXi |Ti=1(x)− FXi |Ti=0(x)}︸ ︷︷ ︸
bias due to imbalance of observables within their common support

+

∫
S
{E(Yi (0) | Ti = 1,Xi = x)− E(Yi (0) | Ti = 0,Xi = x)}dFXi |Ti=1(x)︸ ︷︷ ︸

bias due to unobservables in common support of observables

Matching deals with (1) and (2) but not (3) 4 / 16



Exact and Coarsened Exact Matching

Exact Matching perfect covariate balance:

F̃ (Xi | Ti = 1) = F̃ (Xi | Ti = 0)

No model dependence
But, exact matching is infeasible when

covariate is continuous
there are many covariates

Coarsened Exact Matching (CEM) (Iacus et al. 2011 Political Anal.)

discretize covariates so that you can match
covariates are often discrete
discrete categories may have substantive meanings
accounts for all interactions among coarsened variables
some treated units may have no matched controls (lack of overlap)
 changes estimand
bias-variance tradeoff
still infeasible in high dimension
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Matching based on Distance Measures

Common measures used for dimension reduction:
1 Mahalanobis distance:

D(Xi ,Xj ) =

√
(Xi − Xj )>Σ̃−1(Xi − Xj )

2 (Estimated) Propensity score:

D(Xi ,Xj ) = |π̂(Xi )− π̂(Xj )| = | ̂Pr(Ti = 1 | Xi )− ̂Pr(Tj = 1 | Xj )|

or often with the linear predictor of logistic regression

D(Xi ,Xj ) = |logit(π̂(Xi ))− logit(π̂(Xj ))|

Classical matching methods (Rubin. 2006. Matched Sampling for Causal
Effects. Cambridge University Press; Stuart. 2010. Stat. Sci.):

one-to-one, one-to-many
with and without replacement
caliper
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Propensity Score as a Balancing Score (Rosenbaum and Rubin.

1983. Biometrika)

Probability of receiving the treatment:

π(Xi) = Pr(Ti = 1 | Xi)

Balancing property:

Ti ⊥⊥ Xi | π(Xi)

Exogeneity given the propensity score (under exogeneity given
covariates):

(Yi(1),Yi(0)) ⊥⊥ Ti | π(Xi)

Dimension reduction propensity score matching
But, true propensity score is unknown: propensity score tautology
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Checking Covariate Balance

Success of matching method depends on the resulting balance
Ideally, compare the joint distribution of all covariates
In practice, check lower-dimensional summaries (e.g., standardized
mean difference, variance ratio, empirical CDF difference)

standardized mean difference =

difference-in-means︷ ︸︸ ︷
1
n1

n∑
i=1

Ti

Xij −
1
|Mi |

∑
i′∈Mi

Xi′ j


√√√√ 1

n1 − 1

n∑
i=1

Ti (Xij − X j1)2

︸ ︷︷ ︸
standard deviation

Frequent use of balance test
failure to reject the null 6= covariate balance
problematic especially because matching reduces the number of
observations
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Bias of Matching

Bias of matching arises because of imbalance:

B(Xi ,XMi ) = E(Yi(0) | Ti = 1,Xi)− E

 1
|Mi |

∑
i ′∈Mi

Yi ′

∣∣∣∣ XMi


= µ0(Xi)−

1
|Mi |

∑
i ′∈Mi

µ0(Xi ′)

where XMi = {Xi ′}i ′∈Mi withMi denoting the “matched set” for i
Bias correction (Abadie and Imbens. 2011. J Bus Econ Stat):

Ŷi(0) =
1
|Mi |

∑
i ′∈Mi

Yi ′ + ̂Bias(Xi ,XMi )

=
1
|Mi |

∑
i ′∈Mi

{
Yi ′ + β̂>(Xi − Xi ′)

}
where β̂ is the estimated coefficient for the regression of Yi ′ on Xi ′

using all i ′ ∈Mi
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Variance

All matching estimators can be written as a weighting estimator:

τ̂match =
1
n1

n∑
i=1

Ti

Yi −
1
|Mi |

∑
i ′∈Mi

Yi ′


=

1
n1

∑
i:Ti=1

Yi −
1
n0

∑
i:Ti=0

n0

n1

∑
i ′:Ti′=1

1{i ∈Mi ′}
|Mi ′ |


︸ ︷︷ ︸

Wi

Yi

Estimation error for the conditional ATT (CATT):

τ̂match − CATT =
1
n1

∑
i:Ti=1

µ0(Xi)−
1
n0

∑
i:Ti=0

Wi · µ0(Xi)︸ ︷︷ ︸
≈0 if matched well and in a large sample

+
1
n1

∑
i:Ti=1

(Yi(1)− µ1(Xi))− 1
n0

∑
i:Ti=0

Wi(Yi(0)− µ0(Xi))
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Assume matching is done well and the sample is relatively large
Conditional variance:

V(τ̂match | X,T)

≈ 1
n2

1

n∑
i:Ti=1

V(Yi(1) | X,T) +
1
n2

0

n∑
i:Ti=0

W 2
i · V(Yi(0) | X,T)

=
n∑

i=1

{
Ti

n1
+ (1− Ti)

Wi

n0

}2

V(Yi | X,T)

1 estimate V(Yi | X,T) via matching (Imbens and Rubin, Chapter 19))
2 heteroskedasticity-robust standard errors using regression

Bootstrap (Abadie and Spiess, in-press, J. Am. Stat. Assoc)

sample matches, not units
cluster standard errors are valid under misspecification
does not work for matching with replacement
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Motivation

Matching methods for improving covariate balance
Potential limitations of matching methods:

1 inefficient it may throw away data
2 ineffective it may not be able to balance covariates

Recall that matching is a special case of weighting:

τ̂match =
1
n1

n∑
i=1

Ti

Yi −
1
|Mi |

∑
i ′∈Mi

Yi ′


=

1
n1

∑
i:Ti=1

Yi −
1
n0

∑
i:Ti=0

n0

n1

∑
i ′:Ti′=1

1{i ∈Mi ′}
|Mi ′ |


︸ ︷︷ ︸

Wi

Yi

Idea: weight each observation in the control group such that it
looks like the treatment group (i.e., good covariate balance)
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Inverse Probability-of-Treatment Weighting (IPW)

Weighting for surveys: down-weight over-sampled respondents
Sampling weights inversely proportional to samplig probability
Horvitz-Thompson estimator (1952. J. Am. Stat. Assoc.):

Ê(Yi) =
1
N

N∑
i=1

SiYi

Pr(Si = 1)

Weight by the inverse of propensity score:

ÂTE =
1
n

n∑
i=1

{
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)

}

ÂTT =
1
n1

n∑
i=1

{
TiYi −

π̂(Xi)(1− Ti)Yi

1− π̂(Xi)

}

ÂTC =
1
n0

n∑
i=1

{
(1− π̂(Xi))TiYi

π̂(Xi)
− (1− Ti)Yi

}
Identical propensity score difference-in-means estimator
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Normalized Weights

Survey sampling when the population size is unknown
Hajek Estimator:

Ê(Yi) =

∑
i SiYi/Pr(Si = 1)∑

i Si/Pr(Si = 1)

Weights are normalized but no longer unbiased
Normalization of weights may be important when propensity score
is estimated

ÂTE =

∑n
i=1 TiYi/π̂(Xi)∑n

i=1 Ti/π̂(Xi)
−
∑n

i=1(1− Ti)Yi/{1− π̂(Xi)}∑n
i=1(1− Ti)/{1− π̂(Xi)}

Weighted least squares gives automatic normalization:

(α̂wls, β̂wls) = argmin
α,β

n∑
i=1

{
Ti

π̂(Xi)
+

1− Ti

1− π̂(Xi)

}
(Yi − α− βTi)

2
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Variance

IPW estimator as the method of moments estimator:
1 moment condition from the propensity score model (e.g., score)

n∑
i=1

{
Ti

πθ(Xi )
− 1− Ti

1− πθ(Xi )

}
∂

∂θ
πθ(Xi ) = 0

2 moment conditions from the weighting estimator

Horvitz/Thompson:
1
n

n∑
i=1

TiYi

πθ(Xi )
− µ1 =

1
n

n∑
i=1

(1− Ti )Yi

1− πθ(Xi )
− µ0 = 0

Hajek:
1
n

n∑
i=1

Ti (Yi − µ1)

πθ(Xi )
=

1
n

n∑
i=1

(1− Ti )(Yi − µ0)

1− πθ(Xi )
= 0

 large sample variances are readily available

If the propensity score model is correctly specified, these
variances are smaller than those with the true propensity score
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Doubly Robust Estimator (Robins et al. 1994. J. Am. Stat. Assoc.)

Augmented IPW (AIPW) estimator:

τ̂DR =
1
n

n∑
i=1

[{
TiYi

π̂(Xi)
− Ti − π̂(Xi)

π̂(Xi)
µ̂1(Xi)

}
−
{

(1− Ti)Yi

1− π̂(Xi)
− Ti − π̂(Xi)

1− π̂(Xi)
µ̂0(Xi)

}]
=

1
n

n∑
i=1

[{
µ̂1(Xi) +

Ti(Yi − µ̂1(Xi))

π̂(Xi)

}
−
{
µ̂0(Xi) +

(1− Ti)(Yi − µ̂0(Xi))

1− π̂(Xi)

}]
Consistent if either the propensity score model or the outcome
model is correct you get two chances to be correct
Efficient: smallest asymptotic variance among estimators that are
consistent when the propensity score model is correct
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