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Motivation

@ Causal inference ~~ inference for counterfactuals
@ Comparison between treated and control units
@ Consider the Average Treatment Effect for the Treated (ATT):

mart = E(Yi(1) = Yi(0) [ Ti=1)
@ Regression ~~ model-based imputation:

Treg = Z Ti (Yi — f10(X)))

@ Regression can be model—dependent
@ Matching ~~ nonparametric imputation:
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where M, is the “matched set” for treated unit i

@ Weighting as a generalization of matching
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Matching as Nonparametric Preprocessing for
Reducing Model Dependence (o, etal. 2007. poiitical Anat)
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Bias in Observational Studies

@ Assumptions
@ Overlap: 0 < Pr(T; =1 | X; = x) < 1 for any x
© Ignorability: {Y;(1), Yi(0)} LLT; | X; = x for any x
@ Bias decomposition (Heckman et al. 1998. Econometrica ):
E(Yi(0) | Ti=1)—E(Y;| Ti=0)

= [ B0 Ti= 1.% = ) 71 (x)
S\

_/ E(Y/(0) | Ty = 0,X; = X)dFy, 7 _o(X)
So\S

bias due to lack of common support

T /S E(Y/(0) | Ti = 0,X; = X)d{ F 71 (%) — Fx,7-0(X)}

bias due to imbalance of observables within their common support

+ [AB00) | T = 1. = x) = E(Y(0) | T, = 0.X; = x)}eF 71 (0

bias due to unobservables in common support of observables

@ Matching deals with (1) and (2) but not (3) 416



Exact and Coarsened Exact Matching

@ Exact Matching ~ perfect covariate balance:
FXi | Ti=1) = F(X| T;=0)

@ No model dependence
@ But, exact matching is infeasible when

@ covariate is continuous
o there are many covariates

@ Coarsened Exact Matching (CEM) (lacus et al. 2011 Political Anal.)

discretize covariates so that you can match

covariates are often discrete

discrete categories may have substantive meanings

accounts for all interactions among coarsened variables

some treated units may have no matched controls (lack of overlap)
~+ changes estimand

bias-variance tradeoff

o still infeasible in high dimension
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Matching based on Distance Measures

@ Common measures used for dimension reduction:
@ Mahalanobis distance:

D(Xi,X;) = \/(X,- = X)TEZ(X; - X))

@ (Estimated) Propensity score:

— L —

DX, X)) = |7(X) — 7(X)| = [Pr(T;=1|X;) = Pr(Tj= 1| X;)|

or often with the linear predictor of logistic regression

—

D(X;,X;) = [logit((X;)) — logit(x(X;))|

@ Classical matching methods (Rubin. 2006. Matched Sampling for Causal
Effects. Cambridge University Press; Stuart. 2010. Stat. Sci.):
@ one-to-one, one-to-many
e with and without replacement
o caliper
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Propensity Score as a Balancing Score (rosenbaum and Rubin.

1983. Biometrika)

@ Probability of receiving the treatment:
(X)) = Pr(Ti=1[X;)
@ Balancing property:
T 1L X | 7(X))

@ Exogeneity given the propensity score (under exogeneity given
covariates):

(Yi(1), Yi(0)) 1L T; | =(Xi)

@ Dimension reduction ~~ propensity score matching
@ But, true propensity score is unknown: propensity score tautology
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Checking Covariate Balance

@ Success of matching method depends on the resulting balance
o Ideally, compare the joint distribution of all covariates
e In practice, check lower-dimensional summaries (e.g., standardized
mean difference, variance ratio, empirical CDF difference)

difference-in-means

1 & 1
m K (Xij | M| 2 Xﬂj)

i=1 i"eM;

1 i T-(X-- - X )2
m—14& Y n

standard deviation

standardized mean difference =

@ Frequent use of balance test
o failure to reject the null # covariate balance
e problematic especially because matching reduces the number of

observations
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Bias of Matching

@ Bias of matching arises because of imbalance:

1
B(Xj, Xr,) = E(Yi(0) [ Ti=1,X;) —E M > Y| A,
! i’eM,;
1
= /*LO(XI)_ ‘M| Z //JO(XI’)
! i"eEM;

where Xp(, = {Xj }ircpm; With M; denoting the “matched set” for i
@ Bias correction (Abadie and Imbens. 2011. J Bus Econ Stat):

—_— 1

VO = g o Yo+ Bias(Xi )
! i'eM,;
1 ~
- Y'/ T X—X/
!Mf|,,§m{ $+ BT X0)]

where 3 is the estimated coefficient for the regression of Y on X
using all i/ € M;
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Variance

@ All matching estimators can be written as a weighting estimator:

. 1<
Tmatch — I‘T~| /(I MZY/’)

i=1 ireM
1 1 n 1{i e M;
SO ETD Ol P DR 7
L 0j7=0 \'"inT,_, I
W,
@ Estimation error for the conditional ATT (CATT)'
Tmatch — CATT = — Z po(X;) — — Z Wi - o(X;)
/T 1 /T =0

~0 if matched well and in a large sample

FST ) i) ST WH(H(0) — o(X)

i T=1 0 j:1,=0
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@ Assume matching is done well and the sample is relatively large
@ Conditional variance:

V(7A'match | X,T)

1 n 1 n 5
= 2 V() X T+ > WE-V(Y(0) [ XT)
1 Ti=1 0/ T=0

Q

- S ra-mp v X

n
= .

@ estimate V(Y; | X, T) via matching (Imbens and Rubin, Chapter 19))
@ heteroskedasticity-robust standard errors using regression

o Bootstrap (Abadie and Spiess, in-press, J. Am. Stat. Assoc)

e sample matches, not units
o cluster standard errors are valid under misspecification
e does not work for matching with replacement
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Motivation

@ Matching methods for improving covariate balance
@ Potential limitations of matching methods:
@ inefficient ~ it may throw away data
@ ineffective ~~ it may not be able to balance covariates

@ Recall that matching is a special case of weighting:

A 1<
Tmatch — n T i— | Z Yi
1 i irem;
P RGP IR
= — — - — T i
1T = Mo 720 \™ 7, M|

W;

@ Idea: weight each observation in the control group such that it
looks like the treatment group (i.e., good covariate balance)
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Inverse Probability-of-Treatment Weighting (IPW)

@ Weighting for surveys: down-weight over-sampled respondents
@ Sampling weights inversely proportional to samplig probability

@ Horvitz-Thompson estimator (1952. J. Am. Stat. Assoc.):

N
o5 1 SiYi
B(v) = N; Pr(Si=1)

@ Weight by the inverse of propensity score:

ATE

ATT

ATC

PRE )

1 O A(X)(1 - Th)Y;
n 1{7-’\/'_ 1 —7(X)) }

i=

A A=FXNTY: o oy
w2 R )

@ I|dentical propensity score ~~ difference-in-means estimator
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Normalized Weights

@ Survey sampling when the population size is unknown
@ Hajek Estimator:
Evy _ LiSYi/Pr(Si=1)
E(Y;) = &
(Yi) >.iSi/Pr(Si=1)
@ Weights are normalized but no longer unbiased

@ Normalization of weights may be important when propensity score
is estimated

AE - 2iw TY/RX) XL (1= T)Yi/{1 - #(X)}
Y Ti/RX) XL (= T/ = #(Xi)}

@ Weighted least squares gives automatic normalization:

(Gwiss Buis) = argmmZ{ 3 1—;(7)-()}(%_05_57})2
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Variance

@ IPW estimator as the method of moments estimator:
@ moment condition from the propensity score model (e.g., score)

n T, . TI ,
;{m(x,) - W@(X,)} FgT0Xi) =0

@ moment conditions from the weighting estimator

T~ T Y
Horvitz/Thompson: ,Z: — Z s R 0

1 o (X

n

o1 ”Tf(Yz—u)_1 (1—Tf)(Yf—u)_
Ha]ek.EI;TXI)1 - EZ K] 9~ 0

i=1
~ large sample variances are readily available

@ If the propensity score model is correctly specified, these
variances are smaller than those with the true propensity score
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Doubly Robust Estimator (rovins etal. 1994. J. Am. Stat. Assoc)

@ Augmented IPW (AIPW) estimator:

for = :;ZHWT(;)‘TW&()X )

i=1

1_ ﬁ(X,) 1 - ﬁ(xi.) o
= [ )
_ {p,o(X,) L= :)EY(_ /A;O(Xi))H

@ Consistent if either the propensity score model or the outcome
model is correct ~ you get two chances to be correct

@ Efficient: smallest asymptotic variance among estimators that are
consistent when the propensity score model is correct
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