Matching and Weighting Methods

Kosuke Imai

Harvard University

Spring 2021

Motivation

- Comparison between treated and control units
- Consider the Average Treatment Effect for the Treated (ATT):

$$\tau_{\mathsf{ATT}} = \mathbb{E}(Y_i(1) - Y_i(0) \mid T_i = 1)$$

■ Regression ~> model-based imputation:

$$\hat{\tau}_{\text{reg}} = \frac{1}{n_1} \sum_{i=1}^{n} T_i (Y_i - \hat{\mu}_0(\mathbf{X}_i))$$

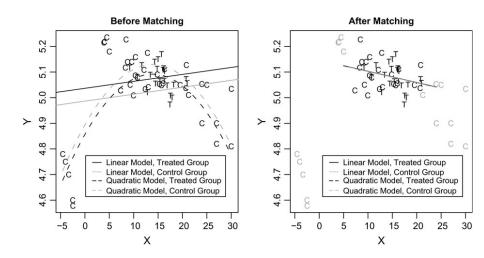
- Regression can be model-dependent
- Matching → nonparametric imputation:

$$\hat{\tau}_{\text{match}} = \frac{1}{n_1} \sum_{i=1}^{n} T_i \left(Y_i - \frac{1}{|\mathcal{M}_i|} \sum_{i' \in \mathcal{M}_i} Y_{i'} \right)$$

where \mathcal{M}_i is the "matched set" for treated unit i

Weighting as a generalization of matching

Matching as Nonparametric Preprocessing for Reducing Model Dependence (Ho, et al. 2007. *Political Anal.*)



Bias in Observational Studies

- Assumptions
 - **1** Overlap: $0 < \Pr(T_i = 1 \mid \mathbf{X}_i = \mathbf{x}) < 1$ for any **x**
 - 2 Ignorability: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp T_i \mid \mathbf{X}_i = \mathbf{x} \text{ for any } \mathbf{x}$
- Bias decomposition (Heckman et al. 1998. Econometrica):

$$\mathbb{E}(Y_i(0) \mid T_i = 1) - \mathbb{E}(Y_i \mid T_i = 0)$$

$$= \int_{\underline{\mathcal{S}}_1 \setminus \underline{\mathcal{S}}} \mathbb{E}(Y_i(0) \mid T_i = 1, \boldsymbol{X}_i = \boldsymbol{x}) dF_{\boldsymbol{X}_i \mid T_i = 1}(\boldsymbol{x})$$

$$-\int_{S_0 \setminus S} \mathbb{E}(Y_i(0) \mid T_i = 0, \mathbf{X}_i = \mathbf{x}) dF_{\mathbf{X}_i \mid T_i = 0}(\mathbf{x})$$

bias due to lack of common support

$$+ \int_{\mathcal{S}} \mathbb{E}(Y_i(0) \mid T_i = 0, \mathbf{X}_i = \mathbf{x}) d\{ \mathbf{F}_{\mathbf{X}_i \mid T_i = 1}(\mathbf{x}) - \mathbf{F}_{\mathbf{X}_i \mid T_i = 0}(\mathbf{x}) \}$$

bias due to imbalance of observables within their common support

$$+ \int_{S} \{ \mathbb{E}(Y_{i}(0) \mid T_{i} = 1, \mathbf{X}_{i} = \mathbf{x}) - \mathbb{E}(Y_{i}(0) \mid T_{i} = 0, \mathbf{X}_{i} = \mathbf{x}) \} dF_{\mathbf{X}_{i} \mid T_{i} = 1}(\mathbf{x})$$

bias due to unobservables in common support of observables

Matching deals with (1) and (2) but not (3)

Exact and Coarsened Exact Matching

■ Exact Matching ~ perfect covariate balance:

$$\widetilde{F}(\mathbf{X}_i \mid T_i = 1) = \widetilde{F}(\mathbf{X}_i \mid T_i = 0)$$

- No model dependence
- But, exact matching is infeasible when
 - covariate is continuous
 - there are many covariates
- Coarsened Exact Matching (CEM) (lacus et al. 2011 Political Anal.)
 - discretize covariates so that you can match
 - covariates are often discrete
 - discrete categories may have substantive meanings
 - accounts for all interactions among coarsened variables

 - bias-variance tradeoff
 - still infeasible in high dimension

Matching based on Distance Measures

- Common measures used for dimension reduction:
 - Mahalanobis distance:

$$D(\mathbf{X}_i, \mathbf{X}_j) = \sqrt{(\mathbf{X}_i - \mathbf{X}_j)^{\top} \widetilde{\Sigma}^{-1} (\mathbf{X}_i - \mathbf{X}_j)}$$

(Estimated) Propensity score:

$$D(\mathbf{X}_i, \mathbf{X}_j) = |\widehat{\pi(\mathbf{X}_i)} - \widehat{\pi(\mathbf{X}_j)}| = |\Pr(\widehat{T_i = 1} \mid \mathbf{X}_i) - \Pr(\widehat{T_j = 1} \mid \mathbf{X}_j)|$$

or often with the linear predictor of logistic regression

$$D(\mathbf{X}_i, \mathbf{X}_j) = |\operatorname{logit}(\widehat{\pi(\mathbf{X}_i)}) - \operatorname{logit}(\widehat{\pi(\mathbf{X}_j)})|$$

- Classical matching methods (Rubin. 2006. Matched Sampling for Causal Effects. Cambridge University Press; Stuart. 2010. Stat. Sci.):
 - one-to-one, one-to-many
 - with and without replacement
 - caliper

Propensity Score as a Balancing Score (Rosenbaum and Rubin.

1983. Biometrika)

Probability of receiving the treatment:

$$\pi(\mathbf{X}_i) = \Pr(T_i = 1 \mid \mathbf{X}_i)$$

Balancing property:

$$T_i \perp \perp \mathbf{X}_i \mid \pi(\mathbf{X}_i)$$

 Exogeneity given the propensity score (under exogeneity given covariates):

$$(Y_i(1), Y_i(0)) \perp T_i \mid \pi(\mathbf{X}_i)$$

- Dimension reduction → propensity score matching
- But, true propensity score is unknown: propensity score tautology

Checking Covariate Balance

- Success of matching method depends on the resulting balance
 - Ideally, compare the joint distribution of all covariates
 - In practice, check lower-dimensional summaries (e.g., standardized mean difference, variance ratio, empirical CDF difference)

standardized mean difference
$$= \frac{\overbrace{\frac{1}{n_1}\sum_{i=1}^n T_i\left(X_{ij} - \frac{1}{|\mathcal{M}_i|}\sum_{i'\in\mathcal{M}_i}X_{i'j}\right)}^{\text{difference-in-means}}}{\underbrace{\sqrt{\frac{1}{n_1-1}\sum_{i=1}^n T_i(X_{ij} - \overline{X}_{j1})^2}}_{\text{standard deviation}}}$$

- Frequent use of balance test
 - failure to reject the null ≠ covariate balance
 - problematic especially because matching reduces the number of observations

Bias of Matching

Bias of matching arises because of imbalance:

$$B(\mathbf{X}_{i}, \mathcal{X}_{\mathcal{M}_{i}}) = \mathbb{E}(Y_{i}(0) \mid T_{i} = 1, \mathbf{X}_{i}) - \mathbb{E}\left\{\frac{1}{|\mathcal{M}_{i}|} \sum_{i' \in \mathcal{M}_{i}} Y_{i'} \mid \mathcal{X}_{\mathcal{M}_{i}}\right\}$$
$$= \mu_{0}(\mathbf{X}_{i}) - \frac{1}{|\mathcal{M}_{i}|} \sum_{i' \in \mathcal{M}_{i}} \mu_{0}(\mathbf{X}_{i'})$$

where $\mathcal{X}_{\mathcal{M}_i} = \{\mathbf{X}_{i'}\}_{i' \in \mathcal{M}_i}$ with \mathcal{M}_i denoting the "matched set" for i

• Bias correction (Abadie and Imbens. 2011. J Bus Econ Stat):

$$\widehat{Y_i(0)} = \frac{1}{|\mathcal{M}_i|} \sum_{i' \in \mathcal{M}_i} Y_{i'} + \operatorname{Bias}(\widehat{\mathbf{X}_i, \mathcal{X}_{\mathcal{M}_i}})$$

$$= \frac{1}{|\mathcal{M}_i|} \sum_{i' \in \mathcal{M}_i} \left\{ Y_{i'} + \hat{\boldsymbol{\beta}}^{\top} (\mathbf{X}_i - \mathbf{X}_{i'}) \right\}$$

where $\hat{\beta}$ is the estimated coefficient for the regression of $Y_{i'}$ on $\mathbf{X}_{i'}$ using all $i' \in \mathcal{M}_i$

Variance

All matching estimators can be written as a weighting estimator:

$$\hat{\tau}_{\text{match}} = \frac{1}{n_1} \sum_{i=1}^{n} T_i \left(Y_i - \frac{1}{|\mathcal{M}_i|} \sum_{i' \in \mathcal{M}_i} Y_{i'} \right)$$

$$= \frac{1}{n_1} \sum_{i:T_i=1} Y_i - \frac{1}{n_0} \sum_{i:T_i=0} \underbrace{\left(\frac{n_0}{n_1} \sum_{i':T_{i'=1}} \frac{1\{i \in \mathcal{M}_{i'}\}}{|\mathcal{M}_{i'}|} \right)}_{W_i} Y_i$$

Estimation error for the conditional ATT (CATT):

$$\hat{\tau}_{\text{match}} - \text{CATT} = \underbrace{\frac{1}{n_1} \sum_{i: T_i = 1} \mu_0(\mathbf{X}_i) - \frac{1}{n_0} \sum_{i: T_i = 0} W_i \cdot \mu_0(\mathbf{X}_i)}_{\approx 0 \text{ if matched well and in a large sample}}$$

$$+ \frac{1}{n_1} \sum_{i: T_i = 1} (Y_i(1) - \mu_1(\mathbf{X}_i)) - \frac{1}{n_0} \sum_{i: T_i = 0} W_i(Y_i(0) - \mu_0(\mathbf{X}_i))$$

- Assume matching is done well and the sample is relatively large
- Conditional variance:

$$\mathbb{V}(\hat{\tau}_{\mathsf{match}} \mid \mathbf{X}, \mathbf{T})$$

$$\approx \frac{1}{n_1^2} \sum_{i:T_i=1}^n \mathbb{V}(Y_i(1) \mid \mathbf{X}, \mathbf{T}) + \frac{1}{n_0^2} \sum_{i:T_i=0}^n W_i^2 \cdot \mathbb{V}(Y_i(0) \mid \mathbf{X}, \mathbf{T})$$

$$= \sum_{i=1}^n \left\{ \frac{T_i}{n_1} + (1 - T_i) \frac{W_i}{n_0} \right\}^2 \mathbb{V}(Y_i \mid \mathbf{X}, \mathbf{T})$$

- **o** estimate $\mathbb{V}(Y_i \mid \mathbf{X}, \mathbf{T})$ via matching (Imbens and Rubin, Chapter 19))
- 4 heteroskedasticity-robust standard errors using regression
- Bootstrap (Abadie and Spiess, in-press, J. Am. Stat. Assoc)
 - sample matches, not units
 - cluster standard errors are valid under misspecification
 - does not work for matching with replacement

Motivation

- Matching methods for improving covariate balance
- Potential limitations of matching methods:
 - inefficient → it may throw away data
 - ② ineffective → it may not be able to balance covariates
- Recall that matching is a special case of weighting:

$$\hat{\tau}_{\text{match}} = \frac{1}{n_1} \sum_{i=1}^{n} T_i \left(Y_i - \frac{1}{|\mathcal{M}_i|} \sum_{i' \in \mathcal{M}_i} Y_{i'} \right)$$

$$= \frac{1}{n_1} \sum_{i: T_i = 1} Y_i - \frac{1}{n_0} \sum_{i: T_i = 0} \underbrace{\left(\frac{n_0}{n_1} \sum_{i': T_{i' = 1}} \frac{1\{i \in \mathcal{M}_{i'}\}}{|\mathcal{M}_{i'}|} \right)}_{W_i} Y_i$$

 Idea: weight each observation in the control group such that it looks like the treatment group (i.e., good covariate balance)

Inverse Probability-of-Treatment Weighting (IPW)

- Weighting for surveys: down-weight over-sampled respondents
- Sampling weights inversely proportional to samplig probability
- Horvitz-Thompson estimator (1952. J. Am. Stat. Assoc.):

$$\widehat{\mathbb{E}(Y_i)} = \frac{1}{N} \sum_{i=1}^{N} \frac{S_i Y_i}{\Pr(S_i = 1)}$$

Weight by the inverse of propensity score:

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{T_{i} Y_{i}}{\widehat{\pi}(\mathbf{X}_{i})} - \frac{(1 - T_{i}) Y_{i}}{1 - \widehat{\pi}(\mathbf{X}_{i})} \right\}$$

$$\widehat{ATT} = \frac{1}{n_{1}} \sum_{i=1}^{n} \left\{ T_{i} Y_{i} - \frac{\widehat{\pi}(\mathbf{X}_{i})(1 - T_{i}) Y_{i}}{1 - \widehat{\pi}(\mathbf{X}_{i})} \right\}$$

$$\widehat{ATC} = \frac{1}{n_{0}} \sum_{i=1}^{n} \left\{ \frac{(1 - \widehat{\pi}(\mathbf{X}_{i})) T_{i} Y_{i}}{\widehat{\pi}(\mathbf{X}_{i})} - (1 - T_{i}) Y_{i} \right\}$$

Identical propensity score → difference-in-means estimator

Normalized Weights

- Survey sampling when the population size is unknown
- Hajek Estimator:

$$\widehat{\mathbb{E}(Y_i)} = \frac{\sum_i S_i Y_i / \Pr(S_i = 1)}{\sum_i S_i / \Pr(S_i = 1)}$$

- Weights are normalized but no longer unbiased
- Normalization of weights may be important when propensity score is estimated

$$\widehat{\mathsf{ATE}} \ = \ \frac{\sum_{i=1}^n T_i Y_i / \hat{\pi}(\boldsymbol{\mathsf{X}}_i)}{\sum_{i=1}^n T_i / \hat{\pi}(\boldsymbol{\mathsf{X}}_i)} - \frac{\sum_{i=1}^n (1 - T_i) Y_i / \{1 - \hat{\pi}(\boldsymbol{\mathsf{X}}_i)\}}{\sum_{i=1}^n (1 - T_i) / \{1 - \hat{\pi}(\boldsymbol{\mathsf{X}}_i)\}}$$

Weighted least squares gives automatic normalization:

$$(\hat{\alpha}_{\mathsf{wls}}, \hat{\beta}_{\mathsf{wls}}) = \underset{\alpha, \beta}{\mathsf{argmin}} \sum_{i=1}^{n} \left\{ \frac{T_i}{\hat{\pi}(\mathbf{X}_i)} + \frac{1 - T_i}{1 - \hat{\pi}(\mathbf{X}_i)} \right\} (Y_i - \alpha - \beta T_i)^2$$

Variance

- IPW estimator as the method of moments estimator:
 - moment condition from the propensity score model (e.g., score)

$$\sum_{i=1}^{n} \left\{ \frac{T_i}{\pi_{\theta}(\mathbf{X}_i)} - \frac{1 - T_i}{1 - \pi_{\theta}(\mathbf{X}_i)} \right\} \frac{\partial}{\partial \theta} \pi_{\theta}(\mathbf{X}_i) = 0$$

moment conditions from the weighting estimator

Horvitz/Thompson:
$$\frac{1}{n} \sum_{i=1}^{n} \frac{T_{i} Y_{i}}{\pi_{\theta}(\mathbf{X}_{i})} - \mu_{1} = \frac{1}{n} \sum_{i=1}^{n} \frac{(1 - T_{i}) Y_{i}}{1 - \pi_{\theta}(\mathbf{X}_{i})} - \mu_{0} = 0$$
Hajek: $\frac{1}{n} \sum_{i=1}^{n} \frac{T_{i} (Y_{i} - \mu_{1})}{\pi_{\theta}(\mathbf{X}_{i})} = \frac{1}{n} \sum_{i=1}^{n} \frac{(1 - T_{i}) (Y_{i} - \mu_{0})}{1 - \pi_{\theta}(\mathbf{X}_{i})} = 0$

√ large sample variances are readily available

 If the propensity score model is correctly specified, these variances are smaller than those with the true propensity score

Doubly Robust Estimator (Robins et al. 1994. J. Am. Stat. Assoc.)

• Augmented IPW (AIPW) estimator:

$$\hat{\tau}_{DR} = \frac{1}{n} \sum_{i=1}^{n} \left[\left\{ \frac{T_{i} Y_{i}}{\hat{\pi}(\mathbf{X}_{i})} - \frac{T_{i} - \hat{\pi}(\mathbf{X}_{i})}{\hat{\pi}(\mathbf{X}_{i})} \hat{\mu}_{1}(\mathbf{X}_{i}) \right\} - \left\{ \frac{(1 - T_{i}) Y_{i}}{1 - \hat{\pi}(\mathbf{X}_{i})} - \frac{T_{i} - \hat{\pi}(\mathbf{X}_{i})}{1 - \hat{\pi}(\mathbf{X}_{i})} \hat{\mu}_{0}(\mathbf{X}_{i}) \right\} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[\left\{ \hat{\mu}_{1}(\mathbf{X}_{i}) + \frac{T_{i}(Y_{i} - \hat{\mu}_{1}(\mathbf{X}_{i}))}{\hat{\pi}(\mathbf{X}_{i})} \right\} - \left\{ \hat{\mu}_{0}(\mathbf{X}_{i}) + \frac{(1 - T_{i})(Y_{i} - \hat{\mu}_{0}(\mathbf{X}_{i}))}{1 - \hat{\pi}(\mathbf{X}_{i})} \right\} \right]$$

- Consistent if either the propensity score model or the outcome model is correct → you get two chances to be correct
- Efficient: smallest asymptotic variance among estimators that are consistent when the propensity score model is correct