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Causal Mechanisms

Causal inference is a central goal of scientific research
Scientists care about causal mechanisms, not just about causal
effects external validity
Policy makers want to devise better policies

Randomized experiments often only determine whether the
treatment causes changes in the outcome
Not how and why the treatment affects the outcome
Common criticism of experiments and statistics:

black box view of causality
Qualitative research process tracing

Question: How can we learn about causal mechanisms from
experimental and observational studies?
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Direct and Indirect Effects

DAG representation
T ∈ {0,1}: treatment
M ∈M: mediator
Y : outcome with potential outcome Y (t ,m)

M

T Y

Goal: decompose total effect into direct and indirect effects
Alternative: decompose the treatment into different components
How large is the indirect effect relative to the total effect?
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Controlled Direct Effects (CDE)

Definition

Individual: ξi(m) = Yi(1,m)− Yi(0,m)

Average: ξ̄(m) = E{Yi(1,m)− Yi(0,m)}

for some m ∈M

Interpretation
direct effect of treatment while holding the mediator constant at m
causal effect of intervention on T and M

CDE does not directly quantify causal mechanism
If M fully explains causal mechanism, CDEs will be zero for all m
Interaction effects ξi(m) 6= ξi(m′): CDE varies as a function of M
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Natural Indirect Effects (NIE)

Definition (Causal mediation effects)

Individual: δi(t) = Yi(t ,Mi(1))− Yi(t ,Mi(0))

Average (ACME): δ̄(t) = E{Yi(t ,Mi(1))− Yi(t ,Mi(0))}

Interpretation
effect of the change in M on Y that would be induced by T
change M from Mi (0) to Mi (1) while holding T at t = 0 or t = 1
zero treatment effect on M  zero causal mediation effect

Represents the causal mechanism through Mi

Allows for the decomposition of treatment effect into direct and
indirect effects
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Treatment Effect Decomposition

Natural direct effect (NDE):

Indiviual: ζi(t) = Yi(1,Mi(t))− Yi(0,Mi(t))

Average: ζ̄(t) = E{Yi(1,Mi(t))− Yi(0,Mi(t))}

change T from 0 to 1 while holding M constant at Mi (t)
causal effect of T on Y , holding M constant at its potential value
that would be realized when Ti = t

Represents all mechanisms other than through M

Effect decomposition:

Yi(1,Mi(1))− Yi(0,Mi(0))︸ ︷︷ ︸
total effect

= δi(t)︸︷︷︸
NIE

+ ζi(1− t)︸ ︷︷ ︸
NDE

=
1
2

1∑
t=0

{(δi(t) + ζi(t))}
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Identification of Controlled Direct Effects

X: pre-treatment confounders
Z: post-treatment confounders
Assumptions:

{Yi(t ,m),Mi(t ′)} ⊥⊥ Ti | Xi = x
Yi(t ,m) ⊥⊥ Mi | Xi = x,Ti = t ,Zi = z

for all t ,x, z

M

T Y

X

Z
Post-treatment bias: cannot simply “control for” Z

ξ̄(m) 6=
∑
X,Z

{E(Y | T = 1,M = m,X,Z)− E(Y | T = 0,M = m,X,Z)}P(X,Z)

Identification: must model Z given T and X

ξ̄(m) =
∑
X,Z

{E(Y | T = 1,M = m,X,Z)P(Z | T = 1,X)

−E(Y | T = 0,M = m,X,Z)P(Z | T = 0,X)}P(X)
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Identification of Natural Direct and Indirect Effects

No post-treatment confounders
Assumptions:

{Yi(t ,m),Mi(t ′)} ⊥⊥ Ti | Xi = x
Yi(t ′,m) ⊥⊥ Mi(t) | Xi = x,Ti = t

for all t , t ′,x

M

T Y

X

Cross-world counterfactuals
Randomization of T ,M does not satisfy the assumption
Identification

δ̄(t) =
∑
M,X

E(Y | M,T = t ,X) {P(M | T = 1,X)− P(M | T = 0,X)}P(X)

ζ̄(t) =
∑
M,X

{E(Y | M,T = 1,X)− E(Y | M,T = 0,X)}

× P(M | T = t ,X)P(X)
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Estimation of Controlled Direct Effects

1 Directly use the identification formula

ξ̄(m) =
∑
X,Z

{E(Y | T = 1,M = m,X,Z)P(Z | T = 1,X)

−E(Y | T = 0,M = m,X,Z)P(Z | T = 0,X)}P(X)

regression of Y on T ,M,X,Z
model the distribution of Z given T and X difficult if Z is
high-dimensional

2 No-interaction assumption

E{Yi(t ,m)− Yi(t ,m′) | Ti = t ,Xi ,Zi}
= E{Yi(t ,m)− Yi(t ,m′) | Ti = t ,Xi}

causal effect of M on Y does not depend on Z given T ,X
structural nested mean models
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Structural Nested Mean Models (Robins 1994. Commun. Stat.; see also

Acharya et al. 2016 Am. Political Sci. Rev.)

1 Estimate the regression function

E(Yi | Mi ,Ti ,Xi ,Zi) = α0 + α1Ti + α2Mi + α>
3 Xi + α>

4 Zi

with no interaction between M and Z by the assumption

2 Compute the “blip-function”

γ(t ,m,Xi) = E{Yi(t ,m)− Yi(t ,m0) | Xi} = α2(m −m0)

for any m representing the effect of M = m (relative to m0) on Y

3 Regress the adjusted outcome on T and X

E{Yi − γ(t ,Mi ,Xi) | Ti ,Xi} = β0 + β1︸︷︷︸
ξ̄(m0)

Ti + β>
2 Xi
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Linear Model and Natural Direct and Indirect Effects

Linear structural equation model (LSEM):

Yi = α1 + β1Ti + λ>
1 Xi + ε1i

Mi = α2 + β2Ti + λ>
2 Xi + ε2i

Yi = α3 + β3Ti + γMi + λ>
3 Xi + ε3i

where the first equation is redundant
1 Total effect is β1
2 Direct effect is β3
3 Indirect or mediation effect is β2γ = β1 − β3
4 Effect decomposition: β1 = β3 + β2γ

Baron and Kenny: distinction between moderation and mediation
Moderated mediation:

Yi = α3 + β3Ti + γMi + κTiMi + λ>
3 Xi + ε3i

implying δ̄(1) = β2(γ + κ) and δ̄(0) = β2γ
11 / 12



Estimation of Natural Direct and Indirect Effects

Using the identification formula (NIE)

δ̄(t) =
∑
M,X

E(Y | M,T = t ,X) {P(M | T = 1,X)− P(M | T = 0,X)}

× P(X)

1 predict M given each treatment value: {Mi (1), Mi (0)}
2 predict Y by first setting Ti = t and Mi = Mi (0), and then Ti = t and

Mi = Mi (1): {Yi (t ,Mi (0)),Yi (t ,Mi (1))}
3 compute the average difference between two predicted outcomes

NDE is similar but you can also estimate it by subtracting NIE from
the total effect

ζ̄(t) =
∑
M,X

{E(Y | M,T = 1,X)− E(Y | M,T = 0,X)}

× P(M | T = t ,X)P(X)
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