Causal Mechanisms

Kosuke Imai

Harvard University

Spring 2021

Causal Mechanisms

- Causal inference is a central goal of scientific research
- Scientists care about causal mechanisms, not just about causal effects → external validity
- Policy makers want to devise better policies
- Randomized experiments often only determine whether the treatment causes changes in the outcome
- Not how and why the treatment affects the outcome
- Common criticism of experiments and statistics:

black box view of causality

- Qualitative research → process tracing
- Question: How can we learn about causal mechanisms from experimental and observational studies?

Direct and Indirect Effects

- DAG representation
 - $T \in \{0, 1\}$: treatment
 - $M \in \mathcal{M}$: mediator
 - Y: outcome with potential outcome Y(t, m)

- Goal: decompose total effect into direct and indirect effects
- Alternative: decompose the treatment into different components
- How large is the indirect effect relative to the total effect?

Controlled Direct Effects (CDE)

Definition

```
Individual: \xi_i(m) = Y_i(1, m) - Y_i(0, m)
Average: \bar{\xi}(m) = \mathbb{E}\{Y_i(1, m) - Y_i(0, m)\}
```

for some $m \in \mathcal{M}$

- Interpretation
 - direct effect of treatment while holding the mediator constant at m
 - causal effect of intervention on T and M
- CDE does not directly quantify causal mechanism
- If M fully explains causal mechanism, CDEs will be zero for all m
- Interaction effects $\xi_i(m) \neq \xi_i(m')$: CDE varies as a function of M

Natural Indirect Effects (NIE)

Definition (Causal mediation effects)

```
Individual: \delta_i(t) = Y_i(t, M_i(1)) - Y_i(t, M_i(0))
Average (ACME): \bar{\delta}(t) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}
```

- Interpretation
 - effect of the change in M on Y that would be induced by T
 - change M from $M_i(0)$ to $M_i(1)$ while holding T at t=0 or t=1
 - zero treatment effect on $M \rightsquigarrow$ zero causal mediation effect
- Represents the causal mechanism through M_i
- Allows for the decomposition of treatment effect into direct and indirect effects

Treatment Effect Decomposition

Natural direct effect (NDE):

Indiviual:
$$\zeta_i(t) = Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

Average: $\bar{\zeta}(t) = \mathbb{E}\{Y_i(1, M_i(t)) - Y_i(0, M_i(t))\}$

- change T from 0 to 1 while holding M constant at $M_i(t)$
- causal effect of T on Y, holding M constant at its potential value that would be realized when $T_i = t$
- Represents all mechanisms other than through M
- Effect decomposition:

$$\underbrace{Y_i(1, M_i(1)) - Y_i(0, M_i(0))}_{\text{total effect}} = \underbrace{\frac{\delta_i(t)}{\text{NIE}} + \underbrace{\zeta_i(1 - t)}_{\text{NDE}}}_{\text{NDE}}$$
$$= \frac{1}{2} \sum_{t=0}^{1} \{ (\delta_i(t) + \zeta_i(t)) \}$$

Identification of Controlled Direct Effects

- X: pre-treatment confounders
- Z: post-treatment confounders
- Assumptions:

$$\{Y_i(t,m), M_i(t')\} \perp \!\!\!\perp T_i \mid \mathbf{X}_i = \mathbf{x}$$

 $Y_i(t,m) \perp \!\!\!\perp M_i \mid \mathbf{X}_i = \mathbf{x}, T_i = t, \mathbf{Z}_i = \mathbf{z}$
for all $t, \mathbf{x}, \mathbf{z}$

Post-treatment bias: cannot simply "control for" Z

$$\bar{\xi}(m) \neq \sum_{\mathbf{X},\mathbf{Z}} \{ \mathbb{E}(Y \mid T = 1, M = m, \mathbf{X}, \mathbf{Z}) - \mathbb{E}(Y \mid T = 0, M = m, \mathbf{X}, \mathbf{Z}) \} P(\mathbf{X}, \mathbf{Z})$$

Identification: must model Z given T and X

$$\bar{\xi}(m) = \sum_{\mathbf{X},\mathbf{Z}} \left\{ \mathbb{E}(Y \mid T = 1, M = m, \mathbf{X}, \mathbf{Z}) P(\mathbf{Z} \mid T = 1, \mathbf{X}) - \mathbb{E}(Y \mid T = 0, M = m, \mathbf{X}, \mathbf{Z}) P(\mathbf{Z} \mid T = 0, \mathbf{X}) \right\} P(\mathbf{X})$$

Identification of Natural Direct and Indirect Effects

- No post-treatment confounders
- Assumptions:

$$\{Y_i(t,m), M_i(t')\} \perp \!\!\!\perp T_i \mid \mathbf{X}_i = \mathbf{x}$$

 $Y_i(t',m) \perp \!\!\!\perp M_i(t) \mid \mathbf{X}_i = \mathbf{x}, T_i = t$

for all t, t', \mathbf{x}

- Cross-world counterfactuals
- Randomization of T, M does not satisfy the assumption
- Identification

$$\bar{\delta}(t) = \sum_{M,\mathbf{X}} \mathbb{E}(Y \mid M, T = t, \mathbf{X}) \{ P(M \mid T = 1, \mathbf{X}) - P(M \mid T = 0, \mathbf{X}) \} P(\mathbf{X})$$

$$\bar{\zeta}(t) = \sum \{ \mathbb{E}(Y \mid M, T = 1, \mathbf{X}) - \mathbb{E}(Y \mid M, T = 0, \mathbf{X}) \}$$

$$\times P(M \mid T = t, \mathbf{X})P(\mathbf{X})$$

Estimation of Controlled Direct Effects

Directly use the identification formula

$$\begin{split} \bar{\xi}(\textit{m}) \; &= \; \sum_{\textbf{X},\textbf{Z}} \left\{ \mathbb{E}(\textit{Y} \mid \textit{T} = 1, \textit{M} = \textit{m}, \textbf{X}, \textbf{Z}) \textit{P}(\textbf{Z} \mid \textit{T} = 1, \textbf{X}) \right. \\ &\left. - \mathbb{E}(\textit{Y} \mid \textit{T} = 0, \textit{M} = \textit{m}, \textbf{X}, \textbf{Z}) \textit{P}(\textbf{Z} \mid \textit{T} = 0, \textbf{X}) \right\} \textit{P}(\textbf{X}) \end{split}$$

- regression of Y on T, M, X, Z
- model the distribution of Z given T and X → difficult if Z is high-dimensional
- No-interaction assumption

$$\mathbb{E}\{Y_i(t,m) - Y_i(t,m') \mid T_i = t, \mathbf{X}_i, \mathbf{Z}_i\}$$

$$= \mathbb{E}\{Y_i(t,m) - Y_i(t,m') \mid T_i = t, \mathbf{X}_i\}$$

- causal effect of M on Y does not depend on Z given T, X
- structural nested mean models

Acharya et al. 2016 Am. Political Sci. Rev.)

Estimate the regression function

$$\mathbb{E}(Y_i \mid M_i, T_i, \mathbf{X}_i, \mathbf{Z}_i) = \alpha_0 + \alpha_1 T_i + \alpha_2 M_i + \alpha_3^\top \mathbf{X}_i + \alpha_4^\top \mathbf{Z}_i$$

with no interaction between M and Z by the assumption

2 Compute the "blip-function"

$$\gamma(t,m,\mathbf{X}_i) = \mathbb{E}\{Y_i(t,m) - Y_i(t,m_0) \mid \mathbf{X}_i\} = \alpha_2(m-m_0)$$

for any m representing the effect of M=m (relative to m_0) on Y

Regress the adjusted outcome on T and X

$$\mathbb{E}\{Y_i - \gamma(t, M_i, \mathbf{X}_i) \mid T_i, \mathbf{X}_i\} = \beta_0 + \underbrace{\beta_1}_{\bar{\xi}(m_0)} T_i + \boldsymbol{\beta}_2^\top \mathbf{X}_i$$

Linear Model and Natural Direct and Indirect Effects

• Linear structural equation model (LSEM):

$$Y_{i} = \alpha_{1} + \beta_{1}T_{i} + \boldsymbol{\lambda}_{1}^{\top}\mathbf{X}_{i} + \epsilon_{1i}$$

$$M_{i} = \alpha_{2} + \beta_{2}T_{i} + \boldsymbol{\lambda}_{2}^{\top}\mathbf{X}_{i} + \epsilon_{2i}$$

$$Y_{i} = \alpha_{3} + \beta_{3}T_{i} + \gamma M_{i} + \boldsymbol{\lambda}_{3}^{\top}\mathbf{X}_{i} + \epsilon_{3i}$$

where the first equation is redundant

- **1** Total effect is β_1
- ② Direct effect is β_3
- **1** Indirect or mediation effect is $\beta_2 \gamma = \beta_1 \beta_3$
- **4** Effect decomposition: $\beta_1 = \beta_3 + \beta_2 \gamma$
- Baron and Kenny: distinction between moderation and mediation
- Moderated mediation:

$$Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \kappa T_i M_i + \lambda_3^{\top} \mathbf{X}_i + \epsilon_{3i}$$

implying
$$\bar{\delta}(1) = \beta_2(\gamma + \kappa)$$
 and $\bar{\delta}(0) = \beta_2 \gamma$

Estimation of Natural Direct and Indirect Effects

Using the identification formula (NIE)

$$ar{\delta}(t) = \sum_{M,\mathbf{X}} \mathbb{E}(Y \mid M, T = t, \mathbf{X}) \{ P(M \mid T = 1, \mathbf{X}) - P(M \mid T = 0, \mathbf{X}) \} \times P(\mathbf{X})$$

- opredict M given each treatment value: $\{M_i(1), M_i(0)\}$
- predict Y by first setting $T_i = t$ and $M_i = M_i(0)$, and then $T_i = t$ and $M_i = M_i(1)$: $\{Y_i(t, M_i(0)), Y_i(t, M_i(1))\}$
- compute the average difference between two predicted outcomes
- NDE is similar but you can also estimate it by subtracting NIE from the total effect

$$\bar{\zeta}(t) = \sum_{M,\mathbf{X}} \{ \mathbb{E}(Y \mid M, T = 1, \mathbf{X}) - \mathbb{E}(Y \mid M, T = 0, \mathbf{X}) \}$$
$$\times P(M \mid T = t, \mathbf{X}) P(\mathbf{X})$$