Regression Discontinuity Design

Kosuke Imai

Harvard University

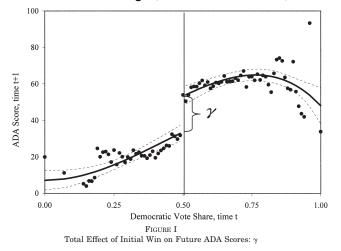
Spring 2021

Observational Studies

- In many cases, we cannot randomize the treatment assignment
 - ethical constraints
 - logistical constraints
- But, some important questions demand empirical evidence even though we cannot conduct randomized experiments!
- Designing observational studies → find a setting where credible causal inference is possible
- Key = Knowledge of treatment assignment mechanism
- Regression discontinuiety design (RD Design):
 - Sharp RD Design: treatment assignment is based on a deterministic rule
 - Fuzzy RD Design: encouragement to receive treatment is based on a deterministic rule
- Originates from a study of the effect of scholarships on students' career plans (Thistlethwaite and Campbell. 1960. J. of Educ. Psychol)

Regression Discontinuity Design

- Idea: Find an arbitrary cutpoint c which determines the treatment assignment such that $T_i = \mathbf{1}\{X_i \ge c\}$
- Close elections as RD design (Lee et al. 2004. Q. J. Econ):

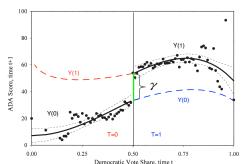


Identification

• Estimand:

$$\mathbb{E}(Y_i(1)-Y_i(0)\mid X_i=c)$$

- Assumption: $\mathbb{E}(Y_i(t) \mid X_i = x)$ is continuous in x for t = 0, 1
 - nothing else that matters to potential outcomes is going on at $X_i = c$
 - deterministic rather than stochastic treatment assignment
 - violation of the overlap assumption: $0 < Pr(T_i \mid X_i = x) < 1$ for all x
 - RD design is based on extrapolation
- Advantage: internal validity
- Disadvantage: external validity



Regression Modeling

- Two regressions:
 - Treated group:

$$\mathbb{E}(Y_i(1) \mid X_i = c) = \lim_{x \downarrow c} \mathbb{E}(Y_i(1) \mid X_i = x) = \lim_{x \downarrow c} \mathbb{E}(Y_i \mid X_i = x)$$

Ontrol group:

$$\mathbb{E}(Y_i(0) \mid X_i = c) = \lim_{x \uparrow c} \mathbb{E}(Y_i(0) \mid X_i = x) = \lim_{x \uparrow c} \mathbb{E}(Y_i \mid X_i = x)$$

Simple linear regression within a window around the threshold c:

$$Y_i = \alpha + \beta(X_i - c) + \epsilon_i$$

- Two separate regressions or a single regression with full interaction
- How should we choose a window in a principled manner?
- How should we relax the functional form assumption?
- Higher-order polynomial regression using the entire data

 → sensitive to outliers and degree of polynomials (Imbens and Gelman.

 2019. J Bus Econ Stat)

Local Linear Regression

- Better behavior at the boundary than other nonparametric regressions
- Two weighted regression with a kernel function and bandwidth h:

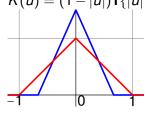
$$(\hat{\alpha}_+, \hat{\beta}_+) = \operatorname*{argmin}_{\alpha, \beta} \sum_{i=1}^n \mathbf{1}\{X_i > c\}\{Y_i - \alpha - (X_i - c)\beta\}^2 \cdot \mathbf{K}\left(\frac{X_i - c}{h}\right)$$

$$(\hat{\alpha}_{-},\hat{\beta}_{-}) = \operatorname*{argmin}_{\alpha,\beta} \sum_{i=1}^{n} \mathbf{1}\{X_i < c\}\{Y_i - \alpha - (X_i - c)\beta\}^2 \cdot K\left(\frac{X_i - c}{h}\right)$$

uniform kernel:

uniform kernel:
$$K(u) = \frac{1}{2} \mathbf{1} \{ |u| < 1 \}$$

triangular kernel: $K(u) = (1 - |u|)\mathbf{1}\{|u| < 1\}$



Optimal Bandwidth (Imbens and Kalyanaraman. 2012. Rev. Econ. Stud.)

• Choose the bandwidth by minimizing the MSE:

$$\begin{split} \mathsf{MSE} &= & \mathbb{E}[\{\underbrace{(\hat{\alpha}_{+} - \hat{\alpha}_{-})}_{\text{estimated effect}} - \underbrace{(\alpha_{+} - \alpha_{-})}^{2} \mid \mathbf{X}] \\ &= & \underbrace{\mathbb{E}\{(\hat{\alpha}_{+} - \alpha_{+})^{2} \mid \mathbf{X}\}}_{\mathsf{MSE of } \hat{\alpha}_{+}} + \underbrace{\mathbb{E}\{(\hat{\alpha}_{-} - \alpha_{-})^{2} \mid \mathbf{X}\}}_{\mathsf{MSE of } \hat{\alpha}_{-}} \\ &- & \underbrace{-2 \cdot \underbrace{\mathbb{E}(\hat{\alpha}_{+} - \alpha_{+} \mid \mathbf{X})}_{\mathsf{Bias}_{+} = \mathsf{Bias of } \hat{\alpha}_{+}} + \underbrace{\mathbb{E}(\hat{\alpha}_{-} - \alpha_{-} \mid \mathbf{X})}_{\mathsf{Bias}_{-} = \mathsf{Bias of } \hat{\alpha}_{-}} \\ &= & (\mathsf{Bias}_{+} - \mathsf{Bias}_{-})^{2} + \mathsf{Variance}_{+} + \mathsf{Variance}_{-} \end{split}$$

- Use the asymptotic approximation to bias and variance of local linear regression estimator at the boundary
- Refinements, e.g., bias correction (Calonico et al. 2014. Econometrica)