Simple Linear Regression

Kosuke Imai

Harvard University

Spring 2021

Agenda

- Linear regression is commonly used in applied research
- We will explore how to use linear regression for causal effect estimation
- To build intuition, we focus on the application of simple linear regression

Linear Regression and Causality

- Regression \rightsquigarrow conditional expectation function of Y given \mathbf{X}

$$
\mathbb{E}(Y \mid \mathbf{X})=f(\mathbf{X})=\boldsymbol{\beta}^{\top} \mathbf{X}
$$

- When can we interpret coefficients as causal effects?
- Causal model as structural equation model

$$
Y_{i}(t)=\alpha+\beta t+\epsilon_{i} \quad \text { for } t=0,1, \text { where } \mathbb{E}\left(\epsilon_{i}\right)=0
$$

(1) No interference between units
(2) $\mathbb{E}\left(Y_{i}(0)\right)=\alpha$
(3) $Y_{i}(1)-Y_{i}(0)=\beta$ for all $i \Longleftrightarrow$ constant additive unit causal effect

- Heterogenous treatment effect model:

$$
Y_{i}(t)=\alpha+\beta_{i} t+\epsilon_{i}=\alpha+\beta t+\underbrace{\left(\beta_{i}-\beta\right) t+\epsilon_{i}}_{=\epsilon_{i}(t)}
$$

where $\mathbb{E}\left(\epsilon_{i}\right)=0$ and $\beta=\mathbb{E}\left(\beta_{i}\right)=\mathbb{E}\left(Y_{i}(1)-Y_{i}(0)\right)$

- $\mathbb{E}\left(\epsilon_{i}(t)\right)=0$ for $t=0,1$
- $\alpha=\mathbb{E}\left(Y_{i}(0)\right)$

Identification Assumption

- Strict exogeneity assumption:

$$
\mathbb{E}\left(\epsilon_{i} \mid \mathbf{T}\right)=\mathbb{E}\left(\epsilon_{i}\right)=0 \quad \text { where } \quad \mathbf{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)^{\top}
$$

- Under this assumption, least squares estimate $\hat{\beta}$ is unbiased for β
- Randomization of treatment: $\left\{Y_{i}(1), Y_{i}(0)\right\}_{i=1}^{n} \Perp \mathbf{T}$
- $\mathbb{E}\left(Y_{i}(t)\right)=\mathbb{E}\left(Y_{i}(t) \mid T_{i}=t\right)=\mathbb{E}\left(Y_{i} \mid T_{i}=t\right)=\alpha+\beta t$
- Recall that $\epsilon_{i}(t)=Y_{i}(t)-\alpha-\beta t$. Then, $\mathbb{E}\left(\epsilon_{i}(t) \mid \mathbf{T}\right)=\mathbb{E}\left(\epsilon_{i}(t)\right)=0$
- Random sampling of units: $\left\{Y_{i}(1), Y_{i}(0)\right\} \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}$
- $\left\{\epsilon_{i}(1), \epsilon_{i}(0)\right\} \stackrel{\text { i.i.d. }}{\sim} \mathcal{P}^{*}$
- independence across observations

Unbiasedness of Least Squares Estimator

- Consider a RCT with a binary treatment
- Least squares estimators:

$$
\begin{aligned}
\hat{\alpha} & =\frac{1}{n_{0}} \sum_{i=1}^{n}\left(1-T_{i}\right) Y_{i} \\
\hat{\beta} & =\frac{1}{n_{1}} \sum_{i=1}^{n} T_{i} Y_{i}-\frac{1}{n_{0}} \sum_{i=1}^{n}\left(1-T_{i}\right) Y_{i} .
\end{aligned}
$$

- Thus, $\hat{\alpha}$ and $\hat{\beta}$ are unbiased for $\mathbb{E}(Y(0))$ and $\mathbb{E}\left(Y_{i}(1)-Y_{i}(0)\right)$
- A similar conclusion holds if T is a categorical treatment
- When T is continuous, the model assumes $Y_{i}(t)$ is linear in t
- What about standard errors?

Homoskedasticity

- Homoskedastic error:

$$
\mathbb{V}(\boldsymbol{\epsilon} \mid \mathbf{T})=\sigma^{2} I_{n}
$$

(1) Equal variance of potential outcomes

$$
\mathbb{V}\left(\epsilon_{i}(0)\right)=\mathbb{V}\left(\epsilon_{i}(1)\right)
$$

(2) Random sampling of units implies $\epsilon_{i} \Perp \epsilon_{j}$ and $\mathbb{V}\left(\epsilon_{i}\right)=\mathbb{V}\left(\epsilon_{j}\right)$

- Under the homoskedasticity assumption,
- model-based variance is,

$$
\mathbb{V}(\hat{\beta} \mid \mathbf{T})=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(T_{i}-\bar{T}\right)^{2}}
$$

- standard model-based variance estimator is,

$$
\widehat{\mathbb{V}(\hat{\beta} \mid T)}=\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}\left(T_{i}-\bar{T}\right)^{2}} \quad \text { where } \quad \hat{\sigma}^{2}=\frac{1}{n-2} \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}
$$

Violation of the Homoskedasticity Assumption

- Homoskedasticity assumption may be unrealistic: $\sigma_{1}^{2} \neq \sigma_{0}^{2}$
- Constant additive treatment effect \rightsquigarrow homoskedasticity
- Bias in the estimated variance when the assumption does not hold

$$
\begin{aligned}
\text { Bias } & =\underbrace{\mathbb{E}\left(\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}\left(T_{i}-\bar{T}\right)^{2}}\right)}_{\text {under complete randomization }}-\underbrace{\left(\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{0}^{2}}{n_{0}}\right)}_{\text {true variance }} \\
& =\frac{\left(n_{1}-n_{0}\right)(n-1)}{n_{1} n_{0}(n-2)}\left(\sigma_{1}^{2}-\sigma_{0}^{2}\right)
\end{aligned}
$$

- Bias is zero when
(1) homoskedasticity assumption holds: $\sigma_{1}^{2}=\sigma_{0}^{2}$
(2) design is balanced: $n_{1}=n_{0}$
- Bias can be negative or positive
- Bias is typically small but does not go away asymptotically

Heteroskedasticity-Robust Variance Estimator

- Eicker-Huber-White (EHW) robust variance estimator:

$$
\left.\begin{array}{rl}
\underbrace{\mathbb{V}_{\text {EHW }}((\hat{\alpha}, \hat{\beta}) \mid \mathbf{X})}_{\text {sandwich }} & =\underbrace{\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}}_{\text {bread }} \underbrace{\left(\mathbf{X}^{\top} \operatorname{diag}\left(\hat{\epsilon}_{i}^{2}\right) \mathbf{X}\right)}_{\text {meat }} \underbrace{\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}}_{\text {bread }} \\
& =\left(\sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} \mathbf{X}_{i} \mathbf{X}_{i}^{\top}\right)\left(\sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\top}\right)^{-1}
\end{array}\right\}
$$

- The EHW robust variance estimator is asymptotically unbiased

$$
\begin{gathered}
\mathbb{V}_{\mathrm{EHW}}(\hat{\beta} \mid \mathbf{T})=\frac{\tilde{\sigma}_{1}^{2}}{n_{1}}+\frac{\tilde{\sigma}_{0}^{2}}{n_{0}} \text { where } \tilde{\sigma}_{t}^{2}=\frac{1}{n_{t}} \sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=t\right\}\left(Y_{i}-\bar{Y}_{t}\right)^{2} \\
\text { Bias } \left.=\mathbb{E}\left(\mathbb{V _ { \mathrm { EHW } } (\hat { \beta }} \mid \mathbf{T}\right)\right)-\underbrace{\left(\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{0}^{2}}{n_{0}}\right)}_{\text {true variance }}=-\left(\frac{\sigma_{1}^{2}}{n_{1}^{2}}+\frac{\sigma_{0}^{2}}{n_{0}^{2}}\right)
\end{gathered}
$$

Improved Robust Variance Estimators

- HC2 heteroskedasticity-robust variance estimator:

$$
\left.\mathbb{V}_{\mathrm{HC} 2} \widehat{((\hat{\alpha}, \hat{\beta})} \mid \mathbf{X}\right)=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\left\{\mathbf{X}^{\top} \operatorname{diag}\left(\frac{\hat{\epsilon}_{i}^{2}}{1-p_{i i}}\right) \mathbf{X}\right\}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}
$$

where $p_{i i}$ is the leverage

$$
p_{i i}=\mathbf{X}_{i}^{\top}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}_{i}=\left\|\mathbf{P}_{\mathbf{X}} v(i)\right\|^{2}=\left\{\begin{array}{cl}
\frac{1}{n_{1}} & \text { if } T_{i}=1 \\
\frac{1}{n_{0}} & \text { if } T_{i}=0
\end{array}\right.
$$

- $\mathbf{P} \mathbf{x}=\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top}$: projection matrix
- $v(i):$ a vector whose i th element is 1 and other elements are zero
- HC2 variance estimator is identical to the Neyman's variance estimator and is unbiased (Samii and Aronow. 2012. Stat Probab Lett)

$$
\left.\widehat{\mathbb{V}_{\mathrm{HC2}}(\hat{\beta} \mid} \mathbf{T}\right)=\frac{\hat{\sigma}_{1}^{2}}{n_{1}}+\frac{\hat{\sigma}_{0}^{2}}{n_{0}}
$$

Summary

- Simple linear regression $=$ Difference-in-means estimator
- Homoskedasticity implies the equal variance of potential outcomes
- Heteroskedasticity-robust variance estimator relaxes this assumption

