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Agenda

@ Linear regression is commonly used in applied research

@ We will explore how to use linear regression for causal effect
estimation

@ To build intuition, we focus on the application of simple linear
regression
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Linear Regression and Causality

@ Regression ~~ conditional expectation function of Y given X
E(Y|X) = f(X) = B'X
@ When can we interpret coefficients as causal effects?
@ Causal model as structural equation model
Yi(t) = a+Bt+¢ for t=0,1, where E(¢;) =0
@ No interference between units

Q E(Y(0)) =«

© Yi(1) - Y;(0) = g for all i += constant additive unit causal effect
@ Heterogenous treatment effect model:

Yi(t) = a+8it+e = a+pt+(8i— B)t+¢
=¢(t)

where E(¢;) = 0 and g = E(8;) = E(Yi(1) — Y;(0))
o E(ei(t))=0fort=0,1
o a— E(Y,(0))

3/10



Identification Assumption

@ Strict exogeneity assumption:
E(ei | T) = E(e) = 0 where T=(Ty,Tp,..., Tp)"

@ Under this assumption, least squares estimate 3 is unbiased for 3

@ Randomization of treatment: {Y;(1), Yi(0)}7, LL T
o E(Yj(1)) =E(Yi(t) | i=t)=E(Y;| Ti=t)=a+pt
e Recall that ¢;(t) = Yj(t) — o — Bt. Then, E(e;(t) | T) = E(ei(t)) =0

@ Random sampling of units: {Y;(1), Y;(0)} " P

o {e(1),6(0)} K" P
@ independence across observations
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Unbiasedness of Least Squares Estimator

@ Consider a RCT with a binary treatment
@ Least squares estimators:

1 n
& = — (1 - TI)YH
o35
1 & n

1
a2 T ) (1= TY:

n
1= i—1

)
I

@ Thus, & and j are unbiased for E(Y(0)) and E(Y;(1) — Y;(0))

@ A similar conclusion holds if T is a categorical treatment
@ When T is continuous, the model assumes Y;({) is linear in t

@ What about standard errors?
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Homoskedasticity

@ Homoskedastic error:
V(e |T) = o2,
@ Equal variance of potential outcomes

V(ei(0)) = V(ei(1))
@ Random sampling of units implies ¢;LLe; and V(e;) = V(e))
@ Under the homoskedasticity assumption,
e model-based variance is,

0.2

YiL(Ti—T)

e standard model-based variance estimator is,

V(E|T) =

o — AD 1

~ g ~ A
V(B|T) = W where 62 = anZE’Z
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Violation of the Homoskedasticity Assumption

Homoskedasticity assumption may be unrealistic: o2 # o2
Constant additive treatment effect ~~ homoskedasticity
Bias in the estimated variance when the assumption does not hold

52 o2 o2
Bias = E| ——-—-| - [+ +2
(ZL(T:' - T)2> <”1 Mo

under complete randomization true variance

(n1_n0)(n_1)( 2 2)
mno(n—2) 17

@ Bias is zero when
2

@ homoskedasticity assumption holds: 02 = og
@ design is balanced: ny = ng

Bias can be negative or positive
Bias is typically small but does not go away asymptotically
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Heteroskedasticity-Robust Variance Estimator

@ Eicker-Huber-White (EHW) robust variance estimator:

Vern(@8) [ X) = (XTX)" (X7 diag(2)X) (XTX)""

sandwich bread meat bread
n —1 n n —1
T ~2 T T
= (Z X;X; ) (Z EXX; ) (Z X;X; )
i=1 i=1 i=1

where X; = (1, T;)) and X = (Xy,...,Xp) "

@ The EHW robust variance estimator is asymptotically unbiased

— 52 &2 1 — <
T) = 1+-2 wh 57 = — Y HTi=t}(Yi— Y1)
Vepw(8 [ T) T, Where &t = o 2 { tHYi=Yt)

— 02 o2 02 o2

Bias = E(V ™ - [ 22420} — |24 20

i (Venw(6 | T)) (m * 2 - n2

true variance
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Improved Robust Variance Estimators

@ HC2 heteroskedasticity-robust variance estimator:

Vhe2((6.8) [ X) = (XTX)™ {XTdiag<1 : ) x} (X"X)"

- M
where pj; is the leverage

if T, =1

T T 2 _

e Px = X(XTX)~"XT: projection matrix
e v(i): a vector whose ith element is 1 and other elements are zero

EIRE

@ HC2 variance estimator is identical to the Neyman’s variance
estimator and is unbiased (Samii and Aronow. 2012. Stat Probab Lett)

A2 A2
- A (o2 g,
Vhe2(B | T) = n*l ,.Tg
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Summary

@ Simple linear regression = Difference-in-means estimator

@ Homoskedasticity implies the equal variance of potential
outcomes

@ Heteroskedasticity-robust variance estimator relaxes this
assumption
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