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Agenda

Linear regression is commonly used in applied research

We will explore how to use linear regression for causal effect
estimation

To build intuition, we focus on the application of simple linear
regression
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Linear Regression and Causality

Regression conditional expectation function of Y given X

E(Y | X) = f (X) = β>X

When can we interpret coefficients as causal effects?
Causal model as structural equation model

Yi(t) = α+ βt + εi for t = 0,1, where E(εi) = 0
1 No interference between units
2 E(Yi(0)) = α
3 Yi(1)− Yi(0) = β for all i ⇐⇒ constant additive unit causal effect

Heterogenous treatment effect model:

Yi(t) = α+ βi t + εi = α+ βt + (βi − β)t + εi︸ ︷︷ ︸
=εi (t)

where E(εi) = 0 and β = E(βi) = E(Yi(1)− Yi(0))
E(εi(t)) = 0 for t = 0,1
α = E(Yi(0))
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Identification Assumption

Strict exogeneity assumption:

E(εi | T) = E(εi) = 0 where T = (T1,T2, . . . ,Tn)
>

Under this assumption, least squares estimate β̂ is unbiased for β

Randomization of treatment: {Yi(1),Yi(0)}ni=1 ⊥⊥ T

E(Yi(t)) = E(Yi(t) | Ti = t) = E(Yi | Ti = t) = α+ βt
Recall that εi(t) = Yi(t)− α− βt . Then, E(εi(t) | T) = E(εi(t)) = 0

Random sampling of units: {Yi(1),Yi(0)}
i.i.d.∼ P

{εi(1), εi(0)}
i.i.d.∼ P∗

independence across observations
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Unbiasedness of Least Squares Estimator

Consider a RCT with a binary treatment
Least squares estimators:

α̂ =
1
n0

n∑
i=1

(1− Ti)Yi ,

β̂ =
1
n1

n∑
i=1

TiYi −
1
n0

n∑
i=1

(1− Ti)Yi .

Thus, α̂ and β̂ are unbiased for E(Y (0)) and E(Yi(1)− Yi(0))

A similar conclusion holds if T is a categorical treatment
When T is continuous, the model assumes Yi(t) is linear in t

What about standard errors?
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Homoskedasticity

Homoskedastic error:

V(ε | T) = σ2In

1 Equal variance of potential outcomes

V(εi(0)) = V(εi(1))

2 Random sampling of units implies εi⊥⊥εj and V(εi) = V(εj)
Under the homoskedasticity assumption,

model-based variance is,

V(β̂ | T) =
σ2∑n

i=1(Ti − T )2

standard model-based variance estimator is,

̂V(β̂ | T ) =
σ̂2∑n

i=1(Ti − T )2
where σ̂2 =

1
n − 2

n∑
i=1

ε̂2i

6 / 10



Violation of the Homoskedasticity Assumption

Homoskedasticity assumption may be unrealistic: σ2
1 6= σ2

0

Constant additive treatment effect homoskedasticity
Bias in the estimated variance when the assumption does not hold

Bias = E

(
σ̂2∑n

i=1(Ti − T )2

)
︸ ︷︷ ︸

under complete randomization

−

(
σ2

1
n1

+
σ2

0
n0

)
︸ ︷︷ ︸

true variance

=
(n1 − n0)(n − 1)

n1n0(n − 2)
(σ2

1 − σ2
0)

Bias is zero when
1 homoskedasticity assumption holds: σ2

1 = σ2
0

2 design is balanced: n1 = n0

Bias can be negative or positive
Bias is typically small but does not go away asymptotically
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Heteroskedasticity-Robust Variance Estimator

Eicker-Huber-White (EHW) robust variance estimator:

̂VEHW((α̂, β̂) | X)︸ ︷︷ ︸
sandwich

= (X>X)−1︸ ︷︷ ︸
bread

(X> diag(ε̂2i )X)︸ ︷︷ ︸
meat

(X>X)−1︸ ︷︷ ︸
bread

=

(
n∑

i=1

XiX>i

)−1( n∑
i=1

ε̂2i XiX>i

)(
n∑

i=1

XiX>i

)−1

where Xi = (1,Ti) and X = (X1, . . . ,Xn)
>

The EHW robust variance estimator is asymptotically unbiased

̂VEHW(β̂ | T) =
σ̃2

1
n1

+
σ̃2

0
n0

where σ̃2
t =

1
nt

n∑
i=1

1{Ti = t}(Yi−Y t)
2

Bias = E( ̂VEHW(β̂ | T))−

(
σ2

1
n1

+
σ2

0
n0

)
︸ ︷︷ ︸

true variance

= −

(
σ2

1

n2
1
+
σ2

0

n2
0

)
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Improved Robust Variance Estimators

HC2 heteroskedasticity-robust variance estimator:

̂VHC2((α̂, β̂) | X) = (X>X)−1

{
X> diag

(
ε̂2i

1− pii

)
X

}
(X>X)−1

where pii is the leverage

pii = X>i (X
>X)−1Xi = ‖PXv(i)‖2 =

{
1
n1

if Ti = 1
1
n0

if Ti = 0

PX = X(X>X)−1X>: projection matrix
v(i): a vector whose i th element is 1 and other elements are zero

HC2 variance estimator is identical to the Neyman’s variance
estimator and is unbiased (Samii and Aronow. 2012. Stat Probab Lett)

̂VHC2(β̂ | T) =
σ̂2

1
n1

+
σ̂2

0
n0

9 / 10



Summary

Simple linear regression = Difference-in-means estimator

Homoskedasticity implies the equal variance of potential
outcomes

Heteroskedasticity-robust variance estimator relaxes this
assumption
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