McCartan, Cory, Christopher T. Kenny, Tyler Simko, George Garcia III, Kevin Wang, Melissa Wu, Shiro Kuriwaki, and Kosuke Imai. (2022). ``Simulated redistricting plans for the analysis and evaluation of redistricting in the United States: 50stateSimulations.'' Scientific Data, Vol. 9, No. 689, pp. 1-10.

 

  Abstract

This article introduces the 50stateSimulations, a collection of simulated congressional districting plans and underlying code developed by the Algorithm-Assisted Redistricting Methodology (ALARM) Project. The 50stateSimulations allow for the evaluation of enacted and other congressional redistricting plans in the United States. While the use of redistricting simulation algorithms has become standard in academic research and court cases, any simulation analysis requires non-trivial efforts to combine multiple data sets, identify state-specific redistricting criteria, implement complex simulation algorithms, and summarize and visualize simulation outputs. We have developed a complete workflow that facilitates this entire process of simulation-based redistricting analysis for the congressional districts of all 50 states. The resulting 50stateSimulations include ensembles of simulated 2020 congressional redistricting plans and necessary replication data. We also provide the underlying code, which serves as a template for customized analyses. All data and code are free and publicly available. This article details the design, creation, and validation of the data.

  Related Papers and Software

McCartan, Cory, Christopher Kenny, Tyler Simko, Emma Ebowe, Michael Zhao, and Kosuke Imai. ``Redistricting Reforms Reduce Gerrymandering by Constraining Partisan Actors.''
Kenny, Christopher T., Cory McCartan, Tyler Simko, Shiro Kuriwaki, and Kosuke Imai. (2023). ``Widespread Partisan Gerrymandering Mostly Cancels Nationally, but Reduces Electoral Competition .'' Proceedings of the National Academy of Sciences, Vol. 120, No. 25, e2217322120.
Fifield, Benjamin, Michael Higgins, Kosuke Imai, and Alexander Tarr. (2020). ``Automated Redistricting Simulation Using Markov Chain Monte Carlo.'' Journal of Computational and Graphical Statistics, Vol. 29, No. 4, pp. 715-728.
Fifield, Benjamin, Kosuke Imai, Jun Kawahara, and Christopher T. Kenny. (2020). ``The Essential Role of Empirical Validation in Legislative Redistricting Simulation.'' Statistics and Public Policy, Vol. 7, No. 1, pp 52-68.
McCartan, Cory, and Kosuke Imai. (2023). ``Sequential Monte Carlo for Sampling Balanced and Compact Redistricting Plans.'' Annals of Applied Statistics, Vol. 17, No. 4 (December), pp. 3300-3323.
Fifield, Benjamin, Christopher T. Kenny, Cory MaCartan, and Kosuke Imai. ``redist: Computational Algorithms for Redistricting Simulation.'' available through The Comprehensive R Archive Network and GitHub.

© Kosuke Imai
 Last modified: Wed Jul 17 05:47:24 EDT 2024