|
|
Congressional district lines in many U.S. states are drawn by partisan actors, raising concerns about gerrymandering. To separate the partisan effects of redistricting from the effects of other factors including geography and redistricting rules, we compare possible party compositions of the U.S. House under the enacted plan to those under a set of alternative simulated plans that serve as a non-partisan baseline. We find that partisan gerrymandering is widespread in the 2020 redistricting cycle, but most of the electoral bias it creates cancels at the national level, giving Republicans two additional seats on average. Geography and redistricting rules separately contribute a moderate pro-Republican bias. Finally, we find that partisan gerrymandering reduces electoral competition and makes the partisan composition of the U.S. House less responsive to shifts in the national vote. |
McCartan, Cory, Christopher T. Kenny,
Tyler Simko, George Garcia III, Kevin Wang, Melissa Wu, Shiro
Kuriwaki, and Kosuke Imai. (2022). ``Simulated redistricting plans for the
analysis and evaluation of redistricting in the United States:
50stateSimulations.'' Scientific Data,
Vol. 9, No. 689, pp. 1-10. |
Fifield, Benjamin, Michael Higgins, Kosuke
Imai, and Alexander Tarr. (2020). ``Automated Redistricting Simulation Using
Markov Chain Monte Carlo.'' Journal of
Computational and Graphical Statistics, Vol. 29, No. 4,
pp. 715-728. |
Fifield, Benjamin, Kosuke Imai, Jun
Kawahara, and Christopher T. Kenny. (2020). ``The Essential Role of Empirical
Validation in Legislative Redistricting Simulation.''
Statistics and Public Policy, Vol. 7, No. 1, pp
52-68. |
McCartan, Cory, and Kosuke
Imai. (2023). ``Sequential
Monte Carlo for Sampling Balanced and Compact Redistricting
Plans.'' Annals of Applied Statistics,
Vol. 17, No. 4 (December), pp. 3300-3323. |
Fifield, Benjamin, Christopher T. Kenny,
Cory MaCartan, and Kosuke Imai. ``redist: Computational
Algorithms for Redistricting Simulation.'' available
through The Comprehensive R
Archive Network and GitHub.
|